cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 25 results. Next

A248906 Binary representation of prime power divisors of n: Sum_{p^k | n} 2^(A065515(p^k)-1).

Original entry on oeis.org

0, 1, 2, 5, 8, 3, 16, 37, 66, 9, 128, 7, 256, 17, 10, 549, 1024, 67, 2048, 13, 18, 129, 4096, 39, 8200, 257, 16450, 21, 32768, 11, 65536, 131621, 130, 1025, 24, 71, 262144, 2049, 258, 45, 524288, 19, 1048576, 133, 74, 4097, 2097152, 551, 4194320, 8201
Offset: 1

Views

Author

Keywords

Examples

			The prime power divisors of 12 are 2, 3, and 4. These are indices 1, 2, and 3 in the list of prime powers, so a(12) = 2^(1-1) + 2^(2-1) + 2^(3-1) = 7.
		

Crossrefs

Programs

  • Haskell
    a248906 = sum . map ((2 ^) . subtract 2 . a095874) . tail . a210208_row
    -- Reinhard Zumkeller, Mar 07 2015
  • PARI
    al(n) = my(r=vector(n),pps=[p| p <- [1..n], isprimepower(p)],p2); for(k=1,#pps,p2=2^(k-1);forstep(j=pps[k],n,pps[k],r[j]+=p2));r
    

Formula

Additive with a(p^k) = Sum_{j=1..k} 2^(A065515(p^j)-1).
a(A051451(k)) = 2^k - 1.
a(n) = Sum_{k=1..A073093(n)} 2^(A095874(A210208(n,k))-2). - Reinhard Zumkeller, Mar 07 2015

A000961 Powers of primes. Alternatively, 1 and the prime powers (p^k, p prime, k >= 1).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227
Offset: 1

Views

Author

Keywords

Comments

The term "prime power" is ambiguous. To a mathematician it means any number p^k, p prime, k >= 0, including p^0 = 1.
Any nonzero integer is a product of primes and units, where the units are +1 and -1. This is tied to the Fundamental Theorem of Arithmetic which proves that the factorizations are unique up to order and units. (So, since 1 = p^0 does not have a well defined prime base p, it is sometimes not regarded as a prime power. See A246655 for the sequence without 1.)
These numbers are (apart from 1) the numbers of elements in finite fields. - Franz Vrabec, Aug 11 2004
Numbers whose divisors form a geometrical progression. The divisors of p^k are 1, p, p^2, p^3, ..., p^k. - Amarnath Murthy, Jan 09 2002
These are also precisely the orders of those finite affine planes that are known to exist as of today. (The order of a finite affine plane is the number of points in an arbitrarily chosen line of that plane. This number is unique for all lines comprise the same number of points.) - Peter C. Heinig (algorithms(AT)gmx.de), Aug 09 2006
Except for first term, the index of the second number divisible by n in A002378, if the index equals n. - Mats Granvik, Nov 18 2007
These are precisely the numbers such that lcm(1,...,m-1) < lcm(1,...,m) (=A003418(m) for m>0; here for m=1, the l.h.s. is taken to be 0). We have a(n+1)=a(n)+1 if a(n) is a Mersenne prime or a(n)+1 is a Fermat prime; the converse is true except for n=7 (from Catalan's conjecture) and n=1, since 2^1-1 and 2^0+1 are not considered as Mersenne resp. Fermat prime. - M. F. Hasler, Jan 18 2007, Apr 18 2010
The sequence is A000015 without repetitions, or more formally, A000961=Union[A000015]. - Zak Seidov, Feb 06 2008
Except for a(1)=1, indices for which the cyclotomic polynomial Phi[k] yields a prime at x=1, cf. A020500. - M. F. Hasler, Apr 04 2008
Also, {A138929(k) ; k>1} = {2*A000961(k) ; k>1} = {4,6,8,10,14,16,18,22,26,32,34,38,46,50,54,58,62,64,74,82,86,94,98,...} are exactly the indices for which Phi[k](-1) is prime. - M. F. Hasler, Apr 04 2008
A143201(a(n)) = 1. - Reinhard Zumkeller, Aug 12 2008
Number of distinct primes dividing n=omega(n) < 2. - Juri-Stepan Gerasimov, Oct 30 2009
Numbers n such that Sum_{p-1|p is prime and divisor of n} = Product_{p-1|p is prime and divisor of n}. A055631(n) = A173557(n-1). - Juri-Stepan Gerasimov, Dec 09 2009, Mar 10 2010
Numbers n such that A028236(n) = 1. Klaus Brockhaus, Nov 06 2010
A188666(k) = a(k+1) for k: 2*a(k) <= k < 2*a(k+1), k > 0; notably a(n+1) = A188666(2*a(n)). - Reinhard Zumkeller, Apr 25 2011
A003415(a(n)) = A192015(n); A068346(a(n)) = A192016(n); a(n)=A192134(n) + A192015(n). - Reinhard Zumkeller, Jun 26 2011
A089233(a(n)) = 0. - Reinhard Zumkeller, Sep 04 2013
The positive integers n such that every element of the symmetric group S_n which has order n is an n-cycle. - W. Edwin Clark, Aug 05 2014
Conjecture: these are numbers m such that Sum_{k=0..m-1} k^phi(m) == phi(m) (mod m), where phi(m) = A000010(m). - Thomas Ordowski and Giovanni Resta, Jul 25 2018
Numbers whose (increasingly ordered) divisors are alternatingly squares and nonsquares. - Michel Marcus, Jan 16 2019
Possible numbers of elements in a finite vector space. - Jianing Song, Apr 22 2021

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • M. Koecher and A. Krieg, Ebene Geometrie, Springer, 1993.
  • R. Lidl and H. Niederreiter, Introduction to Finite Fields and Their Applications, Cambridge 1986, Theorem 2.5, p. 45.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

There are four different sequences which may legitimately be called "prime powers": A000961 (p^k, k >= 0), A246655 (p^k, k >= 1), A246547 (p^k, k >= 2), A025475 (p^k, k=0 and k >= 2). When you refer to "prime powers", be sure to specify which of these you mean. Also A001597 is the sequence of nontrivial powers n^k, n >= 1, k >= 2. - N. J. A. Sloane, Mar 24 2018
Cf. indices of record values of A003418; A000668 and A019434 give a member of twin pairs a(n+1)=a(n)+1.
A138929(n) = 2*a(n).
A028236 (if n = Product (p_j^k_j), a(n) = numerator of Sum 1/p_j^k_j). - Klaus Brockhaus, Nov 06 2010
A000015(n) = Min{term : >= n}; A031218(n) = Max{term : <= n}.
Complementary (in the positive integers) to sequence A024619. - Jason Kimberley, Nov 10 2015

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert)
    a000961 n = a000961_list !! (n-1)
    a000961_list = 1 : g (singleton 2) (tail a000040_list) where
    g s (p:ps) = m : g (insert (m * a020639 m) $ insert p s') ps
    where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, May 01 2012, Apr 25 2011
    
  • Magma
    [1] cat [ n : n in [2..250] | IsPrimePower(n) ]; // corrected by Arkadiusz Wesolowski, Jul 20 2012
    
  • Maple
    readlib(ifactors): for n from 1 to 250 do if nops(ifactors(n)[2])=1 then printf(`%d,`,n) fi: od:
    # second Maple program:
    a:= proc(n) option remember; local k; for k from
          1+a(n-1) while nops(ifactors(k)[2])>1 do od; k
        end: a(1):=1: A000961:= a:
    seq(a(n), n=1..100);  # Alois P. Heinz, Apr 08 2013
  • Mathematica
    Select[ Range[ 2, 250 ], Mod[ #, # - EulerPhi[ # ] ] == 0 & ]
    Select[ Range[ 2, 250 ], Length[FactorInteger[ # ] ] == 1 & ]
    max = 0; a = {}; Do[m = FactorInteger[n]; w = Sum[m[[k]][[1]]^m[[k]][[2]], {k, 1, Length[m]}]; If[w > max, AppendTo[a, n]; max = w], {n, 1, 1000}]; a (* Artur Jasinski *)
    Join[{1}, Select[Range[2, 250], PrimePowerQ]] (* Jean-François Alcover, Jul 07 2015 *)
  • PARI
    A000961(n,l=-1,k=0)=until(n--<1,until(lA000961(lim=999,l=-1)=for(k=1,lim, l==lcm(l,k) && next; l=lcm(l,k); print1(k,",")) \\ M. F. Hasler, Jan 18 2007
    
  • PARI
    isA000961(n) = (omega(n) == 1 || n == 1) \\ Michael B. Porter, Sep 23 2009
    
  • PARI
    nextA000961(n)=my(m,r,p);m=2*n;for(e=1,ceil(log(n+0.01)/log(2)),r=(n+0.01)^(1/e);p=prime(primepi(r)+1);m=min(m,p^e));m \\ Michael B. Porter, Nov 02 2009
    
  • PARI
    is(n)=isprimepower(n) || n==1 \\ Charles R Greathouse IV, Nov 20 2012
    
  • PARI
    list(lim)=my(v=primes(primepi(lim)),u=List([1])); forprime(p=2,sqrtint(lim\1),for(e=2,log(lim+.5)\log(p),listput(u,p^e))); vecsort(concat(v,Vec(u))) \\ Charles R Greathouse IV, Nov 20 2012
    
  • Python
    from sympy import primerange
    def A000961_list(limit): # following Python style, list terms < limit
        L = [1]
        for p in primerange(1, limit):
            pe = p
            while pe < limit:
                L.append(pe)
                pe *= p
        return sorted(L) # Chai Wah Wu, Sep 08 2014, edited by M. F. Hasler, Jun 16 2022
    
  • Python
    from sympy import primepi
    from sympy.ntheory.primetest import integer_nthroot
    def A000961(n):
        def f(x): return int(n+x-1-sum(primepi(integer_nthroot(x,k)[0]) for k in range(1,x.bit_length())))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Jul 23 2024
  • Sage
    def A000961_list(n):
        R = [1]
        for i in (2..n):
            if i.is_prime_power(): R.append(i)
        return R
    A000961_list(227) # Peter Luschny, Feb 07 2012
    

Formula

a(n) = A025473(n)^A025474(n). - David Wasserman, Feb 16 2006
a(n) = A117331(A117333(n)). - Reinhard Zumkeller, Mar 08 2006
Panaitopol (2001) gives many properties, inequalities and asymptotics, including a(n) ~ prime(n). - N. J. A. Sloane, Oct 31 2014, corrected by M. F. Hasler, Jun 12 2023 [The reference gives pi*(x) = pi(x) + pi(sqrt(x)) + ... where pi*(x) counts the terms up to x, so it is the inverse function to a(n).]
m=a(n) for some n <=> lcm(1,...,m-1) < lcm(1,...,m), where lcm(1...0):=0 as to include a(1)=1. a(n+1)=a(n)+1 <=> a(n+1)=A019434(k) or a(n)=A000668(k) for some k (by Catalan's conjecture), except for n=1 and n=7. - M. F. Hasler, Jan 18 2007, Apr 18 2010
A001221(a(n)) < 2. - Juri-Stepan Gerasimov, Oct 30 2009
A008480(a(n)) = 1 for all n >= 1. - Alois P. Heinz, May 26 2018
Sum_{k=1..n} 1/a(k) ~ log(log(a(n))) + 1 + A077761 + A136141. - François Huppé, Jul 31 2024

Extensions

Description modified by Ralf Stephan, Aug 29 2014

A010055 1 if n is a prime power p^k (k >= 0), otherwise 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0
Offset: 1

Views

Author

Keywords

Comments

Characteristic function of unit or prime powers p^k (k >= 1). Characteristic function of prime powers p^k (k >= 0). - Daniel Forgues, Mar 03 2009
See A065515 for partial sums. - Reinhard Zumkeller, Nov 22 2009

Crossrefs

Cf. A069513 (1 if n is a prime power p^k (k >= 1), else 0.)
Cf. A268340.
Cf. A100995.

Programs

  • Haskell
    a010055 n = if a001221 n <= 1 then 1 else 0
    -- Reinhard Zumkeller, Nov 28 2015, Mar 19 2013, Nov 17 2011
    
  • Maple
    A010055 := proc(n)
        if n =1 then
            1;
        else
            if nops(ifactors(n)[2]) = 1 then
                1;
            else
                0 ;
            end if;
        end if;
    end proc: # R. J. Mathar, May 25 2017
  • Mathematica
    A010055[n_]:=Boole[PrimeNu[n]<=1]; A010055/@Range[20] (* Enrique Pérez Herrero, May 30 2011 *)
    {1}~Join~Table[Boole@ PrimePowerQ@ n, {n, 2, 105}] (* Michael De Vlieger, Feb 02 2016 *)
  • PARI
    for(n=1,120,print1(omega(n)<=1,","))
    
  • Python
    from sympy import primefactors
    def A010055(n): return int(len(primefactors(n)) <= 1) # Chai Wah Wu, Mar 31 2023

Formula

Dirichlet generating function: 1 + ppzeta(s). Here ppzeta(s) = Sum_{p prime} Sum_{k>=1} 1/(p^k)^s. Note that ppzeta(s) = Sum_{p prime} 1/(p^s-1) = Sum_{k>=1} primezeta(k*s). - Franklin T. Adams-Watters, Sep 11 2005
a(n) = 0^(A119288(n)-1). - Reinhard Zumkeller, May 13 2006
a(A000961(n)) = 1; a(A024619(n)) = 0. - Reinhard Zumkeller, Nov 17 2011
a(n) = if A001221(n) <= 1 then 1, otherwise 0. - Reinhard Zumkeller, Nov 28 2015
If n >= 2, a(n) = A069513(n). - Jeppe Stig Nielsen, Feb 02 2016
Conjecture: a(n) = (n - A048671(n))/A000010(n) for all n > 1. - Velin Yanev, Mar 10 2021 [The conjecture is true. - Andrey Zabolotskiy, Mar 11 2021]

Extensions

More terms from Charles R Greathouse IV, Mar 12 2008
Edited by Daniel Forgues, Mar 02 2009
Comment re Galois fields moved to A069513 by Franklin T. Adams-Watters, Nov 02 2009

A031218 Largest prime power <= n.

Original entry on oeis.org

1, 2, 3, 4, 5, 5, 7, 8, 9, 9, 11, 11, 13, 13, 13, 16, 17, 17, 19, 19, 19, 19, 23, 23, 25, 25, 27, 27, 29, 29, 31, 32, 32, 32, 32, 32, 37, 37, 37, 37, 41, 41, 43, 43, 43, 43, 47, 47, 49, 49, 49, 49, 53, 53, 53, 53, 53, 53, 59, 59, 61, 61, 61, 64, 64, 64, 67, 67, 67, 67, 71, 71
Offset: 1

Views

Author

Keywords

Comments

The length of the m-th run of {a(n)} is the length of the (m+1)-st run of A000015 for m > 1. - Colin Linzer, Mar 08 2024

Crossrefs

Programs

  • Haskell
    a031218 n = last $ takeWhile (<= n) a000961_list
    -- Reinhard Zumkeller, Apr 25 2011
    
  • Maple
    A031218 := proc(n)
        local a,pi,p,m ;
        a := 1 ;
        for pi from 1 do
            p := ithprime(pi) ;
            if p > n then
                return a;
            end if;
            for m from 0 do
                if p^m > n then
                    break;
                elif p^m <= n then
                    a := max(a,p^m) ;
                end if;
            end do:
        end do:
        a ;
    end proc:
    seq(A031218(n),n=1..40) ; # R. J. Mathar, Jul 20 2025
  • PARI
    a(n)=if(n<1,0, while(matsize(factor(n))[1]>1,n--); n)
    
  • Python
    from sympy import factorint
    def A031218(n): return next(filter(lambda m:len(factorint(m))<=1, range(n,0,-1))) # Chai Wah Wu, Oct 25 2024

Formula

a(n) = n - A378457(n). - R. J. Mathar, Jul 20 2025
a(n) = A000961(A065515(n)). - Ridouane Oudra, Aug 22 2025

Extensions

More terms from Erich Friedman

A025528 Number of prime powers <= n with exponents > 0 (A246655).

Original entry on oeis.org

0, 1, 2, 3, 4, 4, 5, 6, 7, 7, 8, 8, 9, 9, 9, 10, 11, 11, 12, 12, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 18, 18, 18, 18, 18, 19, 19, 19, 19, 20, 20, 21, 21, 21, 21, 22, 22, 23, 23, 23, 23, 24, 24, 24, 24, 24, 24, 25, 25, 26, 26, 26, 27, 27, 27, 28, 28, 28, 28, 29, 29, 30, 30
Offset: 1

Views

Author

Keywords

Comments

a(n) is the sum of the exponents in the prime factorization of lcm{1,2,...,n}.
Larger than but analogous to Pi(n).
Counts A000961 without 1=prime^0: a(n)=A065515(n)-1. - Reinhard Zumkeller, Jul 03 2003
Equally, number of finite fields of order <= n. - Neven Juric, Feb 05 2010

Examples

			Below 100 there are 25 primes and 25 + 10 = 35 prime powers.
		

References

  • G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres, p. 203, Publications de l'Institut Cartan, 1990.

Crossrefs

Cf. A000961, A000040, A000720, A001221, A003418, A141228, A246655, A276781 (ordinal transform).
One less than A065515.

Programs

  • Mathematica
    primePowerPi[n_] := Sum[PrimePi[n^(1/k)], {k, Log[2, n]}]; Table[primePowerPi[n], {n, 75}] (* Geoffrey Critzer, Jan 07 2012 *) (* and modified by Robert G. Wilson v, Jan 07 2012 *)
    Table[Sum[Boole[1 < Cyclotomic[n, 1]], {n, 1, m}], {m, 1, 75}] (* Fred Daniel Kline, Oct 03 2016 *)
  • PARI
    for(n=1,100,print1(sum(k=1,n,logint(n,prime(k))),",")) \\ corrected by Luc Rousseau, Jan 04 2018
    
  • PARI
    a(n)=sum(i=1,n,if(omega(i)-1,0,1))
    
  • PARI
    a(n)=n+=.5;sum(e=1,log(n)\log(2),primepi(n^(1/e))) \\ Charles R Greathouse IV, Apr 30 2012
    
  • Python
    from sympy import primepi, integer_nthroot
    def A025528(n): return sum(primepi(integer_nthroot(n,k)[0]) for k in range(1,n.bit_length())) # Chai Wah Wu, Aug 15 2024
  • SageMath
    def A025528(n) : return sum([1 for k in (0..n) if is_prime_power(k)])
    print([A025528(n)  for n in (1..74)]) # Peter Luschny, Nov 18 2019
    

Formula

a(n) = Cardinality[{1..n}|A001221(i)=1].
a(n) = Sum_{p prime <= n} floor(log(n)/log(p)). - Benoit Cloitre, Apr 30 2002
a(n) ~ n/log(n). - Benoit Cloitre, May 30 2003
a(n) = A069637(n) + A000720(n). - Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Feb 24 2004 [Corrected by Franklin T. Adams-Watters, Jun 08 2008]
a(n) = A000720(n) + A000720(floor(n^(1/2))) + A000720(floor(n^(1/3))) + ... - Max Alekseyev, May 11 2009
Partial sums of A069513. - Enrique Pérez Herrero, May 30 2011
a(n) = A001222(A003418(n)). - Luc Rousseau, Jan 05 2018
From Steven Foster Clark, Sep 26 2018: (Start)
a(n) = Sum_{m=1..n} A001222(m) * A002321(floor(n/m)) where A001222() is the Omega function and A002321() is the Mertens function.
a(n) = Sum_{m=1..floor(log_2(n))} A000010(m)/m * J(floor(n^(1/m))) where A000010() is Euler's totient function and J(n) = Sum_{m=1..floor(log_2(n))} 1/m * A000720(floor(n^(1/m))) is Riemann's prime-power counting function.
(End)

Extensions

New description from Labos Elemer, Nov 09 2000

A276781 a(n) = 1+n-(nearest power of prime <= n); for n > 1, a(n) = minimal b such that the numbers binomial(n,k) for b <= k <= n-b have a common divisor greater than 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 3, 1, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 2, 3, 4, 5, 1, 2, 3, 4, 1, 2, 1, 2, 3, 4, 1, 2, 1, 2, 3, 4, 1, 2, 3, 4, 5, 6, 1, 2, 1, 2, 3, 1, 2, 3, 1, 2, 3, 4, 1, 2, 1, 2, 3, 4, 5, 6, 1, 2, 1, 2, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 6, 7, 8, 1, 2, 3, 4, 1, 2
Offset: 1

Views

Author

N. J. A. Sloane, Sep 29 2016, following a suggestion from Eric Desbiaux

Keywords

Comments

The definition in the video has "b < k < n-b" rather than "b <= k <= n-b", but that appears to be a typographical error.
From Antti Karttunen, Jan 21 2020: (Start)
a(n) = 1 if n is a power of prime (term of A000961), otherwise a(n) is one more than the distance to the nearest preceding prime power.
For n > 1, a(n) indicates the maximum region on the row n of Pascal's triangle (A007318) such that binomial terms C(n,a(n)) .. C(n,n-a(n)) all share a common prime factor. Because for all prime powers, p^k, the binomial terms C(p^k,1) .. C(p^k,p^k-1) have p as their prime factor, we have a(A000961(n)) = 1 for all n, while for each successive n that is not a prime power, the region of shared prime factor shrinks one step more towards the center of the triangle. From this follows that this is the ordinal transform of A025528 (equally, of A065515, or of A003418(n) from n >= 1 onward), equivalent to the simple definition given above.
(End)

Examples

			Row 6 of Pascal's triangle is 1,6,15,20,15,6,1 and [15,20,15] have a common divisor of 5. Since 15 = binomial(6,2), a(6)=2.
		

Crossrefs

Cf. A007318, A010055, A276782 (positions of records), A000961 (positions of ones), A024619 (positions of terms > 1).

Programs

  • Maple
    mygcd:=proc(lis) local i,g,m;
    m:=nops(lis); g:=lis[1];
    for i from 2 to m do g:=gcd(g,lis[i]); od:
    g; end;
    f:=proc(n) local b,lis; global mygcd;
    for b from floor(n/2) by -1 to 1 do
    lis:=[seq(binomial(n,i),i=b..n-b)];
    if mygcd(lis)=1 then break; fi; od:
    b+1;
    end;
    [seq(f(n),n=2..120)];
  • Mathematica
    Table[b = 1; While[GCD @@ Map[Binomial[n, #] &, Range[b, n - b]] == 1, b++]; b, {n, 92}] (* Michael De Vlieger, Oct 03 2016 *)
  • PARI
    A276781(n) = if(1==n,1,forstep(k=n,1,-1,if(isprimepower(k),return(1+n-k)))); \\ Antti Karttunen, Jan 21 2020
    
  • Python
    from sympy import factorint
    def A276781(n): return 1+n-next(filter(lambda m:len(factorint(m))<=1, range(n,0,-1))) # Chai Wah Wu, Oct 25 2024

Formula

If A010055(n) == 1, a(n) = 1, otherwise a(n) = 1 + a(n-1). - Antti Karttunen, Jan 21 2020

Extensions

Term a(1) = 1 prepended and alternative simpler definition added to the name by Antti Karttunen, Jan 20 2020

A095874 a(n) = k if n = A000961(k) (powers of primes), a(n) = 0 if n is not in A000961.

Original entry on oeis.org

1, 2, 3, 4, 5, 0, 6, 7, 8, 0, 9, 0, 10, 0, 0, 11, 12, 0, 13, 0, 0, 0, 14, 0, 15, 0, 16, 0, 17, 0, 18, 19, 0, 0, 0, 0, 20, 0, 0, 0, 21, 0, 22, 0, 0, 0, 23, 0, 24, 0, 0, 0, 25, 0, 0, 0, 0, 0, 26, 0, 27, 0, 0, 28, 0, 0, 29, 0, 0, 0, 30, 0, 31, 0, 0, 0, 0, 0, 32, 0, 33, 0, 34, 0, 0, 0, 0, 0, 35, 0
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 10 2004

Keywords

Comments

The name has been edited to clarify that the indices k refer to A000961 ("powers of primes" = {1} U A246655) and not to the list A246655 of proper prime powers. - M. F. Hasler, Jun 16 2021

Crossrefs

Cf. A000961 (right inverse), A049084, A097621.

Programs

  • Haskell
    a095874 n | y == n    = length xs + 1
              | otherwise = 0
              where (xs, y:ys) = span (< n) a000961_list
    -- Reinhard Zumkeller, Feb 16 2012, Jun 26 2011
    
  • Mathematica
    Join[{1},Module[{k=2},Table[If[PrimePowerQ[n],k;k++,0],{n,2,100}]]] (* Harvey P. Dale, Aug 15 2020 *)
  • PARI
    a(n)=if(isprimepower(n), sum(i=1,logint(n,2), primepi(sqrtnint(n,i)))+1, n==1) \\ Charles R Greathouse IV, Apr 29 2015
    
  • PARI
    {M95874=Map(); A095874(n,k)=if(mapisdefined(M95874,n,&k),k, isprimepower(n), mapput(M95874,n, k=sum(i=1,exponent(n), primepi(sqrtnint(n,i)))+1); k,n==1)} \\ Variant with memoization, possibly useful to compute A097621, A344826 and related. One may omit "isprimepower(n)," (possibly requiring factorization) and ",n==1" if n is known to be a power of a prime, i.e., to get a left inverse for A000961. - M. F. Hasler, Jun 15 2021
    
  • Python
    from sympy import primepi, integer_nthroot, primefactors
    def A095874(n): return 1+int(primepi(n)+sum(primepi(integer_nthroot(n,k)[0]) for k in range(2,n.bit_length()))) if n==1 or len(primefactors(n))==1 else 0 # Chai Wah Wu, Jan 19 2025

Formula

a(n) = Sum_{1 <= k <= n} A010055(k); [corrected by M. F. Hasler, Jun 15 2021]
a(n) = A065515(n)*(A065515(n)-A065515(n-1)).
a(n) = A065515(n)*A069513(n). - M. F. Hasler, Jun 16 2021

Extensions

Edited by M. F. Hasler, Jun 15 2021

A085970 Number of integers ranging from 2 to n that are not prime-powers.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 4, 5, 5, 5, 6, 6, 7, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 13, 14, 15, 16, 17, 17, 18, 19, 20, 20, 21, 21, 22, 23, 24, 24, 25, 25, 26, 27, 28, 28, 29, 30, 31, 32, 33, 33, 34, 34, 35, 36, 36, 37, 38, 38, 39, 40, 41, 41, 42, 42, 43
Offset: 1

Views

Author

Reinhard Zumkeller, Jul 06 2003

Keywords

Comments

For n > 2, a(n) gives the number of duplicate eliminations performed by the Sieve of Eratosthenes when sieving the interval [2, n]. - Felix Fröhlich, Dec 10 2016
Number of terms of A024619 <= n. - Felix Fröhlich, Dec 10 2016
First differs from A082997 at n = 30. - Gus Wiseman, Jul 28 2022

Examples

			The a(30) = 13 numbers: 6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 30. - _Gus Wiseman_, Jul 28 2022
		

Crossrefs

The complement is counted by A065515, without 1's A025528.
For primes instead of prime-powers we have A065855, with 1's A062298.
Partial sums of A143731.
The version not treating 1 as a prime-power is A356068.
A000688 counts factorizations into prime-powers.
A001222 counts prime-power divisors.
A246655 lists the prime-powers (A000961 includes 1), towers A164336.

Programs

  • Mathematica
    With[{nn = 75}, Table[n - Count[#, k_ /; k < n] - 1, {n, nn}] &@ Join[{1}, Select[Range@ nn, PrimePowerQ]]] (* Michael De Vlieger, Dec 11 2016 *)
  • PARI
    a(n) = my(i=0); forcomposite(c=4, n, if(!isprimepower(c), i++)); i \\ Felix Fröhlich, Dec 10 2016
    
  • Python
    from sympy import primepi, integer_nthroot
    def A085970(n): return n-1-sum(primepi(integer_nthroot(n,k)[0]) for k in range(1,n.bit_length())) # Chai Wah Wu, Aug 20 2024

Formula

a(n) = Max{A024619(k)<=n} k;
a(n) = n - A065515(n) = A085972(n) - A000720(n).

Extensions

Name modified by Gus Wiseman, Jul 28 2022. Normally 1 is not considered a prime-power, cf. A000961, A246655.

A356068 Number of integers ranging from 1 to n that are not prime-powers (1 is not a prime-power).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 4, 5, 6, 6, 6, 7, 7, 8, 9, 10, 10, 11, 11, 12, 12, 13, 13, 14, 14, 14, 15, 16, 17, 18, 18, 19, 20, 21, 21, 22, 22, 23, 24, 25, 25, 26, 26, 27, 28, 29, 29, 30, 31, 32, 33, 34, 34, 35, 35, 36, 37, 37, 38, 39, 39, 40, 41, 42
Offset: 1

Views

Author

Gus Wiseman, Jul 31 2022

Keywords

Examples

			The a(30) = 14 numbers: 1, 6, 10, 12, 14, 15, 18, 20, 21, 22, 24, 26, 28, 30.
		

Crossrefs

The complement is counted by A025528, with 1's A065515.
For primes instead of prime-powers we have A062298, with 1's A065855.
The version treating 1 as a prime-power is A085970.
One more than the partial sums of A143731.
A000688 counts factorizations into prime-powers.
A001222 counts prime-power divisors.
A246655 lists the prime-powers (A000961 includes 1), towers A164336.

Programs

  • Mathematica
    Table[Length[Select[Range[n],!PrimePowerQ[#]&]],{n,100}]

Formula

a(n) = A085970(n) + 1.

A139555 a(n) = number of prime-powers (including 1) that each are <= n and are coprime to n.

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 5, 4, 6, 4, 8, 4, 9, 6, 7, 7, 11, 6, 12, 8, 10, 8, 13, 8, 13, 10, 13, 11, 16, 8, 17, 14, 15, 13, 16, 11, 19, 14, 16, 13, 20, 12, 21, 16, 17, 16, 22, 15, 22, 17, 20, 18, 24, 17, 22, 18, 21, 19, 25, 16, 26, 21, 22, 22, 25, 18, 28, 22, 25, 19, 29, 21, 30, 24, 26, 24
Offset: 1

Views

Author

Leroy Quet, Apr 27 2008

Keywords

Comments

Indices of first occurrence of each natural number: 1, 3, 5, 7, 9, 15, 11, 13, 21, 17, 19, 23, 32, 33, ..., . - Robert G. Wilson v
From Reinhard Zumkeller, Oct 27 2010: (Start)
a(n) <= A000010(n); a(A051250(n)) = A000010(A051250(n)), 1 <= n <= 17;
conjecture: a(n) < A000010(n) for n > 60, cf. A051250. (End)

Examples

			All the positive integers <= 21 that are coprime to 21 are 1,2,4,5,8,10,11,13,16,17,19,20. Of these integers, only 1,2,4,5,8,11,13,16,17,19 are prime-powers. There are 10 of these prime-powers; so a(21) = 10.
		

Crossrefs

Cf. A139556.
Cf. A065515. - Reinhard Zumkeller, Oct 27 2010

Programs

  • Haskell
    a139555 = sum . map a010055 . a038566_row
    -- Reinhard Zumkeller, Feb 23 2012, Oct 27 2010
  • Maple
    isA000961 := proc(n) if n = 1 or isprime(n) then true; else RETURN(nops(ifactors(n)[2]) =1) ; fi ; end: A139555 := proc(n) local a,i; a := 0 ; for i from 1 to n do if isA000961(i) and gcd(i,n) = 1 then a := a+1 ; fi ; od: a ; end: seq(A139555(n),n=1..100) ; # R. J. Mathar, May 12 2008
  • Mathematica
    f[n_] := Length@ Select[Range@ n, Length@ FactorInteger@ # == 1 == GCD[n, # ] &]; Array[f, 76] (* Robert G. Wilson v *)

Formula

a(n) = Sum_{k=1..A000010(n)} A010055(A038566(n,k)). - Reinhard Zumkeller, Feb 23 2012

Extensions

More terms from R. J. Mathar and Robert G. Wilson v, May 12 2008
Showing 1-10 of 25 results. Next