cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065532 a(n) = 48*n^2 - 1.

Original entry on oeis.org

-1, 47, 191, 431, 767, 1199, 1727, 2351, 3071, 3887, 4799, 5807, 6911, 8111, 9407, 10799, 12287, 13871, 15551, 17327, 19199, 21167, 23231, 25391, 27647, 29999, 32447, 34991, 37631, 40367, 43199, 46127, 49151, 52271, 55487, 58799, 62207, 65711, 69311, 73007, 76799
Offset: 0

Views

Author

Labos Elemer, Nov 28 2001

Keywords

Crossrefs

Cf. A158463.

Programs

  • Magma
    [48*n^2 - 1: n in [0..50]]; // Vincenzo Librandi, Jul 08 2012
  • Mathematica
    CoefficientList[Series[(1-50*x-47*x^2)/(x-1)^3,{x,0,40}],x] (* Vincenzo Librandi, Jul 08 2012 *)
    LinearRecurrence[{3,-3,1},{-1,47,191},40] (* Harvey P. Dale, Dec 13 2017 *)
  • PARI
    A065532(n)=48*n^2-1
    

Formula

From Vincenzo Librandi, Jul 08 2012: (Start)
G.f.: (1 - 50*x - 47*x^2)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
From Amiram Eldar, Mar 19 2023: (Start)
Sum_{n>=1} 1/a(n) = (1 - cot(Pi/(4*sqrt(3)))*Pi/(4*sqrt(3)))/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = (cosec(Pi/(4*sqrt(3)))*Pi/(4*sqrt(3)) - 1)/2. (End)
From Elmo R. Oliveira, Jan 16 2025: (Start)
E.g.f.: exp(x)*(48*x^2 + 48*x - 1).
a(n) = A158463(2*n). (End)

Extensions

Better description from Randall L Rathbun, Jan 19 2002
Offset changed from 1 to 0 by Harry J. Smith, Oct 21 2009