A065583 Sum of numbers which in base n have (n-1) distinct nonzero digits.
0, 1, 12, 252, 9360, 559800, 49412160, 6039794880, 976299609600, 201599999798400, 51766949513664000, 16177372653293913600, 6044902527410562816000, 2661334524326601925401600, 1363387181797265578297344000, 804077813274862776803112960000, 540880443323184957954046525440000
Offset: 1
Examples
a(4) = 252 since we need to sum the base 4 numbers 123, 132, 213, 231, 312 and 321, i.e. the decimal sum 27+30+39+45+54+57 = 252.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..230
Programs
-
Magma
[n eq 1 select 0 else Factorial(n)*(n^(n-1)-1)/(2*(n-1)): n in [1..30]]; // G. C. Greubel, Aug 16 2022
-
Mathematica
Table[If[n==1, 0, n!*(n^(n-1) -1)/(2*(n-1))], {n,30}] (* G. C. Greubel, Aug 16 2022 *)
-
SageMath
[0]+[factorial(n)*(n^(n-1)-1)/(2*(n-1)) for n in (2..30)] # G. C. Greubel, Aug 16 2022
Extensions
More terms from Benoit Cloitre, Jan 31 2002
More terms from G. C. Greubel, Aug 16 2022