cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065583 Sum of numbers which in base n have (n-1) distinct nonzero digits.

Original entry on oeis.org

0, 1, 12, 252, 9360, 559800, 49412160, 6039794880, 976299609600, 201599999798400, 51766949513664000, 16177372653293913600, 6044902527410562816000, 2661334524326601925401600, 1363387181797265578297344000, 804077813274862776803112960000, 540880443323184957954046525440000
Offset: 1

Views

Author

Henry Bottomley, Nov 28 2001

Keywords

Examples

			a(4) = 252 since we need to sum the base 4 numbers 123, 132, 213, 231, 312 and 321, i.e. the decimal sum 27+30+39+45+54+57 = 252.
		

Crossrefs

Programs

  • Magma
    [n eq 1 select 0 else Factorial(n)*(n^(n-1)-1)/(2*(n-1)): n in [1..30]]; // G. C. Greubel, Aug 16 2022
    
  • Mathematica
    Table[If[n==1, 0, n!*(n^(n-1) -1)/(2*(n-1))], {n,30}] (* G. C. Greubel, Aug 16 2022 *)
  • SageMath
    [0]+[factorial(n)*(n^(n-1)-1)/(2*(n-1)) for n in (2..30)] # G. C. Greubel, Aug 16 2022

Formula

a(n) = n!*(n^(n-1)-1)/(2*(n-1)) = A001710(n)*A060072(n).

Extensions

More terms from Benoit Cloitre, Jan 31 2002
More terms from G. C. Greubel, Aug 16 2022