A065602 Triangle T(n,k) giving number of hill-free Dyck paths of length 2n and having height of first peak equal to k.
1, 1, 1, 3, 2, 1, 8, 6, 3, 1, 24, 18, 10, 4, 1, 75, 57, 33, 15, 5, 1, 243, 186, 111, 54, 21, 6, 1, 808, 622, 379, 193, 82, 28, 7, 1, 2742, 2120, 1312, 690, 311, 118, 36, 8, 1, 9458, 7338, 4596, 2476, 1164, 474, 163, 45, 9, 1, 33062, 25724, 16266, 8928, 4332, 1856, 692, 218, 55, 10, 1
Offset: 2
Examples
T(3,2)=1 reflecting the unique Dyck path (UUDUDD) of length 6, with no hills and height of first peak equal to 2. Triangle begins: 1; 1, 1; 3, 2, 1; 8, 6, 3, 1; 24, 18, 10, 4, 1; 75, 57, 33, 15, 5, 1; 243, 186, 111, 54, 21, 6, 1; 808, 622, 379, 193, 82, 28, 7, 1; 2742, 2120, 1312, 690, 311, 118, 36, 8, 1;
Links
- Reinhard Zumkeller, Rows n = 2..125 of triangle, flattened
- Emeric Deutsch and L. Shapiro, A survey of the Fine numbers, Discrete Math., 241 (2001), 241-265.
Crossrefs
Programs
-
Haskell
a065602 n k = sum [(k-1+2*j) * a007318' (2*n-k-1-2*j) (n-1) `div` (2*n-k-1-2*j) | j <- [0 .. div (n-k) 2]] a065602_row n = map (a065602 n) [2..n] a065602_tabl = map a065602_row [2..] -- Reinhard Zumkeller, May 15 2014
-
Maple
a := proc(n,k) if n=0 and k=0 then 1 elif k<2 or k>n then 0 else sum((k-1+2*j)*binomial(2*n-k-1-2*j,n-1)/(2*n-k-1-2*j),j=0..floor((n-k)/2)) fi end: seq(seq(a(n,k),k=2..n),n=1..14);
-
Mathematica
nmax = 12; t[n_, k_] := Sum[(k-1+2j)*Binomial[2n-k-1-2j, n-1] / (2n-k-1-2j), {j, 0, (n-k)/2}]; Flatten[ Table[t[n, k], {n, 2, nmax}, {k, 2, n}]] (* Jean-François Alcover, Nov 08 2011, after Maple *)
-
SageMath
def T(n,k): return sum( (k+2*j-1)*binomial(2*n-2*j-k-1, n-1)/(2*n-2*j-k-1) for j in (0..(n-k)//2) ) flatten([[T(n,k) for k in (2..n)] for n in (2..12)]) # G. C. Greubel, May 26 2022
Formula
T(n, 2) = A000958(n-1).
Sum_{k=2..n} T(n, k) = A000957(n+1).
From Emeric Deutsch, Feb 23 2004: (Start)
T(n, k) = Sum_{j=0..floor((n-k)/2)} (k-1+2*j)*binomial(2*n-k-1-2*j, n-1)/(2*n-k-1-2*j).
G.f.: t^2*z^2*C/( (1-z^2*C^2)*(1-t*z*C) ), where C = (1-sqrt(1-4*z))/(2*z) is the Catalan function. (End)
T(n,k) = A167772(n-1,k-1), k=2..n. - Reinhard Zumkeller, May 15 2014
From G. C. Greubel, May 26 2022: (Start)
T(n, n-1) = A000027(n-2).
T(n, n-2) = A000217(n-2).
T(n, n-3) = A166830(n-3). (End)
Extensions
More terms from Emeric Deutsch, Feb 23 2004
Comments