cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A065656 Composite numbers k such that sigma(k)*phi(k) + 2*(k+1) is a square.

Original entry on oeis.org

1169, 7777, 41111, 46097, 668167, 846817, 2107519, 3612769, 17424241, 30666527, 37526993, 56323393, 214746055, 383523857, 512376769, 1021934641, 1228492849, 1303949599, 4056001351, 7425397169, 17073544447, 17859428369, 18452226887, 46874737969, 51411954391
Offset: 1

Views

Author

Labos Elemer, Nov 12 2001

Keywords

Comments

a(n) and square root of phi(a(n))*sigma(a(n)) + 2*a(n) + 2 are close to each other: e.g., a(7) = 2107519 and this square root is 2107458.
Since (p+1)*(p-1) + 2*(p+1) = p*p + 2*p + 1 = (p+1)^2 is a square, all primes are solutions.
73362272287 and 181264312447 are also terms. - Donovan Johnson, Jul 13 2012

Examples

			k = 7777: sigma(7777) = 9792, phi(7777) = 6000 and 9792*6000 + 2*7778 = 587675556 = 7666^2.
		

Crossrefs

Programs

  • PARI
    isok(k) = { !isprime(k) && issquare(sigma(k)*eulerphi(k) + 2*(k + 1)) } \\ Harry J. Smith, Oct 26 2009

Extensions

a(9)-a(15) from Harry J. Smith, Oct 26 2009
a(16)-a(20) from Donovan Johnson, May 24 2011
a(21)-a(25) from Donovan Johnson, Jul 13 2012

A065550 a(n) = floor(sqrt(phi(w)*sigma(w)+w^2)), where w=10^n.

Original entry on oeis.org

13, 136, 1391, 14030, 140865, 1411444, 14128309, 141352267, 1413868217, 14140409111, 141412724154, 1414170403052, 14141919829640, 141420277272713, 1414208167563878, 14142108649717545, 141421221367320690, 1414212888023339560, 14142132251982630599, 141421339378569021517
Offset: 1

Views

Author

Labos Elemer, Nov 13 2001

Keywords

Comments

a(n) tends to sqrt(2)*(10^n) when n->oo.

Crossrefs

Programs

  • Maple
    a:= n -> floor(sqrt(2*100^n - 20^n/5 - 50^n/2 + 10^n/10)):
    map(a, [$1..100]); # Robert Israel, Dec 03 2024
  • Mathematica
    a[n_] := Floor[Sqrt[EulerPhi[10^n] * DivisorSigma[1, 10^n] + 100^n]]; Array[a, 20] (* Amiram Eldar, Jun 12 2022 *)
  • PARI
    a(n) = my(w=10^n); sqrtint(eulerphi(w)*sigma(w)+w^2); \\ Michel Marcus, Mar 23 2020
    
  • Python
    from sympy import integer_nthroot, totient as phi, divisor_sigma as sigma
    def isqrt(n): return integer_nthroot(n, 2)[0]
    def a(n): w = 10**n; return isqrt(phi(w)*sigma(w, 1) + w**2)
    print([a(n) for n in range(1, 21)]) # Michael S. Branicky, Jun 12 2022

Formula

a(n) = floor(sqrt(A062354(w) + A000290(w))), where w=10^n.
a(n) = floor(10^n * sqrt(2 - 5^(-n-1) - 2^(-n-1) + 10^(-n-1))). - Robert Israel, Dec 03 2024

Extensions

Corrected and extended by Michel Marcus, Jun 12 2022

A064656 Length of n-th run of odd numbers in A064413.

Original entry on oeis.org

1, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 3, 3, 1, 2, 2, 2, 1, 2, 2, 3, 2, 2, 2, 2, 3, 2, 3, 2, 1, 3, 2, 3, 2, 3, 1, 2, 1, 3, 2, 2, 2, 5, 1, 3, 1, 2, 1, 3, 1, 3, 3, 2, 3, 3, 2, 3, 2, 2, 2, 1, 3, 2, 2, 3, 2, 2, 3, 1, 3, 2, 3, 2, 2, 2, 3, 2, 2, 2, 4, 1, 2, 2, 3, 3, 1, 2, 2, 1, 3, 2, 3, 2, 3, 2, 2, 2, 3, 2, 2, 1, 3
Offset: 1

Views

Author

N. J. A. Sloane, Oct 09 2001

Keywords

Crossrefs

Extensions

More terms from Matthew Conroy, Oct 16 2001

A065552 a(n) = floor(sqrt(phi(10^n)*sigma(10^n) + 10^(3*n))).

Original entry on oeis.org

1, 32, 1004, 31637, 1000048, 31622932, 1000000496, 31622778176, 1000000004990, 31622776617479, 1000000000049975, 31622776601841868, 1000000000000499938, 31622776601685374362, 1000000000000004999847, 31622776601683809131135, 1000000000000000049999618, 31622776601683793478102215
Offset: 0

Views

Author

Labos Elemer, Nov 13 2001

Keywords

Comments

Similar results are obtained if the cube is replaced with other odd powers.

Crossrefs

Programs

  • Mathematica
    a[n_]:=Floor[Sqrt[EulerPhi[10^n]DivisorSigma[1,10^n]+10^(3n)]]; Array[a,17,0] (* Stefano Spezia, Mar 23 2023 *)

Extensions

a(0) = 1 prepended by, a(11)-a(15) corrected by, and a(16)-a(17) from Stefano Spezia, Mar 23 2023
Showing 1-4 of 4 results.