cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A065681 Number of primes <= prime(n) which begin with a 2.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 13 2001

Keywords

Examples

			After 2 and 23, 29 is the third prime beginning with 2: A000040(10) = 29, therefore a(10) = 3. a(664579) = 77025 (A000040(664579) = 9999991 is the largest prime < 10^7).
		

Crossrefs

Programs

  • Mathematica
    Accumulate@ Array[Boole[First@ IntegerDigits@ Prime@ # == 2] &, 87] (* Michael De Vlieger, Jun 14 2018 *)
  • PARI
    lista(n) = { my(a=[p\10^logint(p,10)==2 | p<-primes(n)]); for(i=2, #a, a[i]+=a[i-1]); a} \\ Harry J. Smith, Oct 26 2009

A065682 Number of primes <= prime(n) which begin with a 3.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 13 2001

Keywords

Examples

			a(1) = 0, a(2) = 1. a(664579) = 75290 (A000040(664579) = 9999991 is the largest prime < 10^7).
		

Crossrefs

Programs

  • Mathematica
    Accumulate@ Array[Boole[First@ IntegerDigits@ Prime@ # == 3] &, 87] (* Michael De Vlieger, Jun 14 2018 *)
  • PARI
    lista(n) = { my(a=[p\10^logint(p,10)==3 | p<-primes(n)]); for(i=2, #a, a[i]+=a[i-1]); a} \\ Harry J. Smith, Oct 26 2009

A065683 Number of primes <= prime(n) which begin with a 4.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 20, 20, 20
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 13 2001

Keywords

Examples

			41 = A000040(13) is the first prime beginning with 4, so a(13) = 1. a(664579) = 74114 (A000040(664579) = 9999991 is the largest prime < 10^7).
		

Crossrefs

Programs

A065684 Number of primes <= prime(n) which begin with a 5.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 5, 6, 7, 8, 9, 10, 11
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 13 2001

Keywords

Examples

			a(i) = 1 for 2 < i < 16 and a(16) = 2 as 53 = A000040(16) is the second prime beginning with 5. a(664579) = 72951 (A000040(664579) = 9999991 is the largest prime < 10^7).
		

Crossrefs

Programs

  • Mathematica
    Accumulate@ Array[Boole[First@ IntegerDigits@ Prime@ # == 5] &, 103] (* Michael De Vlieger, Jun 14 2018 *)
  • PARI
    lista(n) = { my(a=[p\10^logint(p,10)==5 | p<-primes(n)]); for(i=2, #a, a[i]+=a[i-1]); a} \\ Harry J. Smith, Oct 26 2009

A065685 Number of primes <= prime(n) which begin with a 6.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 13 2001

Keywords

Examples

			a(17) = 0, a(18) = 1: 61 = A000040(18) is the first prime beginning with 6. a(664579) = 72257 (A000040(664579) = 9999991 is the largest prime < 10^7).
		

Crossrefs

Programs

  • Mathematica
    Accumulate@ Array[Boole[First@ IntegerDigits@ Prime@ # == 6] &, 105] (* Michael De Vlieger, Jun 14 2018 *)
  • PARI
    lista(n) = { my(a=[p\10^logint(p,10)==6 | p<-primes(n)]); for(i=2, #a, a[i]+=a[i-1]); a} \\ Harry J. Smith, Oct 26 2009

A065686 Number of primes <= prime(n) which begin with a 7.

Original entry on oeis.org

0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 13 2001

Keywords

Examples

			a(3) = 0, a(4) = 1. a(664579) = 71564 (A000040(664579) = 9999991 is the largest prime < 10^7).
		

Crossrefs

Programs

  • PARI
    lista(n) = { my(a=[p\10^logint(p,10)==7 | p<-primes(n)]); for(i=2, #a, a[i]+=a[i-1]); a} \\ Harry J. Smith, Oct 26 2009

A065687 Number of primes <= prime(n) which begin with an 8.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Reinhard Zumkeller, Nov 13 2001

Keywords

Examples

			83 = A000040(23) is the first prime beginning with an 8, so a(23) = 1 and a(i) = 0 for i < 23. a(664579) = 71038 (A000040(664579) = 9999991 is the largest prime < 10,000,000).
		

Crossrefs

Programs

  • Mathematica
    Accumulate[If[First[IntegerDigits[#]] == 8, 1, 0]&/@Prime[Range[100]]] (* Vincenzo Librandi, Nov 28 2016 *)
  • PARI
    lista(n) = { my(a=[p\10^logint(p,10)==8 | p<-primes(n)]); for(i=2, #a, a[i]+=a[i-1]); a} \\ Harry J. Smith, Oct 26 2009
Showing 1-7 of 7 results.