cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A065792 a(1) = 9; for n > 1, a(n) is the square root of the smallest square > a(n-1)^2 with a(n-1)^2 forming its final digits.

Original entry on oeis.org

9, 41, 1209, 469959, 176270001209, 6042408942999999530041, 16385871165869048127200000000000176270001209, 28444329561227422116741433513058707457037799999999999999999999993957591057000000469959
Offset: 1

Views

Author

Klaus Brockhaus, Nov 19 2001

Keywords

Comments

a(n) = A050635(n+1) for n >= 1; a(n) = sqrt(A065791(n)).

Crossrefs

A065807 Squares with a smaller square as final digits.

Original entry on oeis.org

49, 64, 81, 100, 121, 144, 169, 225, 289, 324, 361, 400, 441, 484, 529, 625, 729, 784, 841, 900, 961, 1024, 1089, 1225, 1369, 1444, 1521, 1600, 1681, 1764, 1849, 1936, 2025, 2116, 2209, 2304, 2401, 2500, 2601, 2704, 2809, 2916, 3025, 3136, 3249, 3364
Offset: 1

Views

Author

Klaus Brockhaus, Nov 22 2001

Keywords

Crossrefs

A065808 gives the corresponding square roots.
Cf. A038678.

Programs

  • Mathematica
    ds[n_] := NestWhileList[FromDigits[Rest[IntegerDigits[#]]] &, n, # > 9 &]; Select[Range[4, 58]^2, Or @@ IntegerQ /@ Sqrt[Rest[ds[#]]] &] (* Jayanta Basu, Jul 10 2013 *)
  • PARI
    a065807(m) = local(a, b, d, j, k, n); for(k=1, m, a=length(Str(n))-1; b=1; j=1; n=k^2; while(b, d=divrem(n, 10^j); if(d[1]>0&&issquare(d[2]), b=0; print1(n, ", "), if(j
    				
  • PARI
    isokend(n) = my(p=10); for(k=1, #Str(n)-1, if (issquare(n % p), return (1)); p*=10);
    isok(n) = issquare(n) && isokend(n); \\ Michel Marcus, Mar 17 2020

Extensions

Changed offset from 0 to 1 by Vincenzo Librandi, Sep 24 2013

A065793 a(1) = 81; for n > 1, a(n) is the smallest integer > 0 such that the concatenation a(n)a(n-1)...a(2)a(1) is a square.

Original entry on oeis.org

81, 16, 146, 22086, 31071113326, 365107058344463715696, 2684967738644586785227227090233956040549004, 809079884187716191997158821357206898310718837487307207657194711477350102495950972665
Offset: 1

Views

Author

Klaus Brockhaus, Nov 19 2001

Keywords

Comments

a(n) = A061359(n+1) for n > 1.

Crossrefs

Showing 1-3 of 3 results.