A065796 Alternating sum of digits of n^2.
1, 4, 9, 5, 3, 3, 5, -2, -7, 1, 0, 1, 4, -2, 5, 3, 3, 5, -2, 4, 1, 0, 12, 4, 9, 5, 14, 3, 5, 9, 4, 1, 0, 1, 4, -2, 5, 3, 3, 5, -2, 4, 12, 11, 1, 4, 9, 5, 3, 3, 5, 9, 15, 12, 0, 1, 4, -2, -6, 3, 3, 5, 9, -7, 1, 0, 1, 4, -2, 5, -8, -8, 5, -2, 4, 1, 11, -10, -7, -2, -6, 3, 3, -6, -2, -7, 1, 0, 1, -7, -13, -6, 3, 3, -6, -2, 4, 1, 0, 1
Offset: 1
Examples
a(18)=5 because 18^2 is 324 and 4-2+3=5
Links
- Harry J. Smith, Table of n, a(n) for n=1..1000
Crossrefs
Cf. A055017.
Programs
-
Maple
asd:= proc(n) local L,j; L:= convert(n,base,10); add((-1)^(j+1)*L[j],j=1..nops(L)) end proc: seq(asd(n^2),n=1..100); # Robert Israel, Oct 24 2017
-
Mathematica
f[n_] := Block[ {d = Reverse[ IntegerDigits[ n]], k = l = 1, s = 0}, l = Length[d]; While[ k <= l, s = s - (-1)^k*d[[k]]; k++ ]; Return[s]]; Table[ f[n^2], {n, 1, 100} ] Table[Total[Times@@@Partition[Riffle[IntegerDigits[n^2], {1, -1}, {-2, 1, -2}], 2]], {n, 1, 100}] (* Vincenzo Librandi, Oct 24 2017 *)
-
PARI
SumAD(x)= { local(a=1, s=0); while (x>9, s+=a*(x-10*(x\10)); x\=10; a=-a); return(s + a*x) } { for (n=1, 1000, write("b065796.txt", n, " ", SumAD(n^2)) ) } \\ Harry J. Smith, Oct 30 2009
Formula
a(n) = n^2 mod 10 - n^2 mod 100 div 10 + n^2 mod 1000 div 100 - ...
a(n) = A055017(n^2). - Robert Israel, Oct 24 2017
Extensions
More terms from Robert G. Wilson v, Dec 06 2001
Comments