A065814 a(n) = tau(n)^2 - tau(n^2), where tau(n) = A000005(n).
0, 1, 1, 4, 1, 7, 1, 9, 4, 7, 1, 21, 1, 7, 7, 16, 1, 21, 1, 21, 7, 7, 1, 43, 4, 7, 9, 21, 1, 37, 1, 25, 7, 7, 7, 56, 1, 7, 7, 43, 1, 37, 1, 21, 21, 7, 1, 73, 4, 21, 7, 21, 1, 43, 7, 43, 7, 7, 1, 99, 1, 7, 21, 36, 7, 37, 1, 21, 7, 37, 1, 109, 1, 7, 21, 21, 7, 37, 1, 73, 16, 7, 1, 99, 7, 7, 7, 43
Offset: 1
Keywords
Links
- Harry J. Smith, Table of n, a(n) for n = 1..1000
Crossrefs
Programs
-
Mathematica
a[n_] := DivisorSigma[0, n]^2 - DivisorSigma[0, n^2]; Array[a, 100] (* Amiram Eldar, Apr 25 2024 *)
-
PARI
a(n) = { numdiv(n)^2 - numdiv(n^2) } \\ Harry J. Smith, Oct 31 2009
Formula
G.f.: Sum_{n>=1} A000005(n^2)*x^(2*n)/(1-x^n). - Mircea Merca, Feb 26 2014
Comments