A065874 a(n) = (7^(n+1) - (-6)^(n+1))/13.
1, 1, 43, 85, 1891, 5461, 84883, 314245, 3879331, 17077621, 180009523, 897269605, 8457669571, 46142992981, 401365114963, 2339370820165, 19196705648611, 117450280095541, 923711917337203, 5856623681349925, 44652524209512451, 290630718826209301, 2166036735625732243
Offset: 0
References
- R. L. Graham, D. E. Knuth, O. Patashnik, "Concrete Mathematics", Addison-Wesley, 1994, p. 204.
Links
- Harry J. Smith, Table of n, a(n) for n = 0..150
- Index entries for linear recurrences with constant coefficients, signature (1,42).
Programs
-
Maple
n->sum(binomial(n-k, k)*(42)^k, k=0..n)
-
Mathematica
LinearRecurrence[{1,42},{1,1},30] (* Harvey P. Dale, Apr 30 2017 *)
-
PARI
a(n) = { (7^(n+1) - (-6)^(n+1))/13 } \\ Harry J. Smith, Nov 02 2009
Formula
a(n) = a(n-1) + 42a(n-2); a(0) = a(1) = 1.
G.f.: -1/((6*x+1)*(7*x-1)). - R. J. Mathar, Nov 16 2007
Comments