cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065938 Position of sqrt(n) in the mapping N2QuQR1 given in A065936.

Original entry on oeis.org

1, 6, 14, 7, 120, 248, 16160, 1019, 127, 32640, 65408, 16373, 8386032, 4194056, 4194239, 32767, 2147450880, 4294934528, 4611672824287851743, 268435343, 8796091842564, 1125899889968159, 70368744112268, 70368744161279
Offset: 1

Views

Author

Antti Karttunen, Dec 07 2001

Keywords

Crossrefs

Cf. A003285. N2QuQR1(a[n])^2 = n, see A065936. For frac2position_in_0_1_SB_tree see A065658. Cf. also A065939.

Programs

  • Maple
    [seq(frac2position_in_0_1_SB_tree(sqrt_n_confrac2binfrac(j)),j=1..40)];
    sqrt_n_confrac2binfrac := proc(n) local c,t; c := CONFRACS_FOR_sqrt_N[n]; t := `if`((1 = nops(c)),[],`if`((0 = (nops(c) mod 2)),[op(c[2..nops(c)]),op(c[2..nops(c)])],c[2..nops(c)])); RETURN( (((2^c[1])-1) + `if`(1 = nops(c),0,(runcounts2binexp0(t) / ((2^(convert(t,`+`)))-1)))) / (2^c[1])); end;
    runcounts2binexp0 := proc(c) local i,e,n; n := 0; for i from 0 to nops(c)-1 do e := c[i+1]; n := ((2^e)*n) + ((i mod 2)*((2^e)-1)); od; RETURN(n); end;
    CONFRACS_FOR_sqrt_N := [[1], [1, 2], [1, 1, 2], [2], [2, 4], [2, 2, 4], [2, 1, 1, 1, 4], [2, 1, 4], [3], [3, 6], etc., adapted from Weisstein's encyclopedia entry for Continued Fractions]