cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A003285 Period of continued fraction for square root of n (or 0 if n is a square).

Original entry on oeis.org

0, 1, 2, 0, 1, 2, 4, 2, 0, 1, 2, 2, 5, 4, 2, 0, 1, 2, 6, 2, 6, 6, 4, 2, 0, 1, 2, 4, 5, 2, 8, 4, 4, 4, 2, 0, 1, 2, 2, 2, 3, 2, 10, 8, 6, 12, 4, 2, 0, 1, 2, 6, 5, 6, 4, 2, 6, 7, 6, 4, 11, 4, 2, 0, 1, 2, 10, 2, 8, 6, 8, 2, 7, 5, 4, 12, 6, 4, 4, 2, 0, 1, 2, 2, 5, 10, 2, 6, 5, 2, 8, 8, 10, 16, 4, 4, 11, 4, 2, 0, 1, 2, 12
Offset: 1

Views

Author

Keywords

Comments

Any string of five consecutive terms m^2 - 2 through m^2 + 2 for m > 2 in the sequence has the corresponding periods 4,2,0,1,2. - Lekraj Beedassy, Jul 17 2001
For m > 1, a(m^2+m) = 2 and the continued fraction is m, 2, 2*m, 2, 2*m, 2, 2*m, ... - Arran Fernandez, Aug 14 2011
Apparently the generating function of the sequence for the denominators of continued fraction convergents to sqrt(n) is always rational and of form p(x)/[1 - C*x^m + (-1)^m * x^(2m)], or equivalently, the denominators satisfy the linear recurrence b(n+2m) = C*b(n+m) - (-1)^m * b(n), where a(n) is equal to m for each nonsquare n, or 0. See A006702 for the conjecture regarding C. The same conjectures apply to the sequences of the numerators of continued fraction convergents to sqrt(n). - Ralf Stephan, Dec 12 2013
If a(n)=1, n is of form k^2+1 (A002522 except the initial term 1). See A013642 for a(n)=2, A013643 for a(n)=3, A013644 for a(n)=4, A010337 for a(n)=5, A020347 for a(n)=6, A010338 for a(n)=7, A020348 for a(n)=8, A010339 for a(n)=9, and furthermore A020349-A020439. - Ralf Stephan, Dec 12 2013
From William Krier, Dec 12 2024: (Start)
a(m^2-4) = 4 for even m>=6 since sqrt(m^2-4) = [m-1; 1, (m-4)/2, 1, 2*(m-1)].
a(m^2-4) = 6 for odd m>=5 since sqrt(m^2-4) = [m-1; 1, (m-3)/2, 2, (m-3)/2, 1, 2*(m-1)].
a(m^2+4) = 2 for even m>=2 since sqrt(m^2+4) = [m; m/2, 2*m].
a(m^2+4) = 5 for odd m>=3 since sqrt(m^2+4) = [m; (m-1)/2, 1, 1, (m-1)/2, 2*m]. (End)

References

  • A. Brousseau, Number Theory Tables. Fibonacci Association, San Jose, CA, 1973, p. 197.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    f:= n ->  if issqr(n) then 0
       else nops(numtheory:-cfrac(sqrt(n),'periodic','quotients')[2]) fi:
    map(f, [$1..100]); # Robert Israel, Sep 02 2015
  • Mathematica
    a[n_] := ContinuedFraction[Sqrt[n]] // If[Length[ # ] == 1, 0, Length[Last[ # ]]]&
    pcf[n_]:=Module[{s=Sqrt[n]},If[IntegerQ[s],0,Length[ContinuedFraction[s][[2]]]]]; Array[pcf,110] (* Harvey P. Dale, Jul 15 2017 *)
  • PARI
    a(n)=if(issquare(n),return(0));my(s=sqrt(n),x=s,f=floor(s),P=[0],Q=[1],k);while(1,k=#P;P=concat(P,f*Q[k]-P[k]);Q=concat(Q,(n-P[k+1]^2)/Q[k]);k++;for(i=1,k-1,if(P[i]==P[k]&&Q[i]==Q[k],return(k-i)));x=(P[k]+s)/Q[k];f=floor(x)) \\ Charles R Greathouse IV, Jul 31 2011
    
  • PARI
    isok(n, p) = {localprec(p); my(cf = contfrac(sqrt(n))); setsearch(Set(cf), 2*cf[1]);}
    a(n) = {if (issquare(n), 0, my(p=100); while (! isok(n, p), p+=100); localprec(p); my(cf = contfrac(sqrt(n))); for (k=2, #cf, if (cf[k] == 2*cf[1], return (k-1))););} \\ Michel Marcus, Jul 07 2021
    
  • Python
    from sympy.ntheory.continued_fraction import continued_fraction_periodic
    def a(n):
        cfp = continued_fraction_periodic(0, 1, d=n)
        return 0 if len(cfp) == 1 else len(cfp[1])
    print([a(n) for n in range(1, 104)]) # Michael S. Branicky, Aug 22 2021

A065936 a(n) is the integer (reduced squarefree) under the square root obtained when the inverse of a variant of Minkowski's question mark function is applied to the n-th ratio A007305(n+1)/A007306(n+1) in the left-hand subtree of Stern-Brocot tree and zero when it results a rational value.

Original entry on oeis.org

0, 5, 5, 0, 2, 2, 0, 2, 3, 0, 3, 3, 0, 3, 2, 5, 13, 17, 2, 17, 37, 5, 13, 13, 5, 37, 17, 2, 17, 13, 5, 3, 17, 3, 37, 21, 13, 10, 37, 3, 401, 6, 13, 10, 401, 0, 17, 17, 0, 401, 10, 13, 6, 401, 3, 37, 10, 13, 21, 37, 3, 17, 3, 0, 37, 10, 0, 401, 506, 17, 5, 401, 37, 21610, 730, 5, 1373
Offset: 1

Views

Author

Antti Karttunen, Dec 07 2001

Keywords

Comments

Note: the underlying function N2Qv (see the Maple code) maps natural numbers 1, 2, 3, 4, 5, ..., through all the positive rationals in the open range (0,1): 1/2, 1/3, 2/3, 1/4, 2/5, 3/5, ... bijectively to the union of positive rationals and quadratic surds. A065937 gives similar mapping involving the inverse of the standard Minkowski's question mark function.
Note the symmetry of rows 0; 5,5; 0,2,2,0; 2,3,0,3,3,0,3,2; 5,13,17,2,17,37,5,13,13,5,37,17,2,17,13,5; ... emanating from the symmetry present in A007306.

Examples

			The first few values for this mapping are N2Qv(1) = 1, N2Qv(2) = (sqrt(5)-1)/2, N2Qv(3) = (sqrt(5)+1)/2, N2Qv(4) = 1/2, N2Qv(5) = sqrt(2)/2, N2Qv(6) = sqrt(2), N2Qv(7) = 2, N2Qv(8) = sqrt(2)-1
		

Crossrefs

a(n) = A065937(A065934(n)). Positions of the zeros are given by A065810. Positions of sqrt(n) in this mapping: A065938.

Programs

  • Maple
    [seq(find_sqrt(N2Qv(j)),j=1..512)];
    N2Qv := proc(n) local m; m := n + 2^floor_log_2(n); Inverse_of_Variant_of_MinkowskisQMark(A007305(m+1)/A047679(m-1)); end;
    Inverse_of_Variant_of_MinkowskisQMark := proc(r) local x,y,b,d,k,s,i,q; x := numer(r); y := denom(r); if(y = 2*x) then RETURN(1); fi; b := []; d := []; k := 0; s := 0; i := 0; while(x <> 0) do q := floor(x/y); if(i > 0) then b := [op(b),q]; d := [op(d),x]; fi; x := 2*(x-(q*y)); if(member(x,d,'k') and (k > 1) and (b[k] <> b[k-1]) and (q <> floor(x/y))) then s := eval_periodic_confrac_tail(list2runcounts(b[k..nops(b)])); b := b[1..(k-1)]; break; fi; i := i+1; od; if(0 = k) then b := b[1..(nops(b)-1)]; b := [op(b),b[nops(b)]]; fi; if(r < (1/2)) then RETURN(factor(eval_confrac([0,op(list2runcounts(b))],s))); else RETURN(factor(eval_confrac(list2runcounts(b),s))); fi; end;
    eval_confrac := proc(c,z) local x,i; x := z; for i in reverse(c) do x := (`if`((0=x),x,(1/x)))+i; od; RETURN(x); end;
    eval_periodic_confrac_tail := proc(c) local x,i,u,r; x := (eval_confrac(c,u) - u) = 0; r := [solve(x,u)]; RETURN(max(r[1],r[2])); end;
    list2runcounts := proc(b) local a,p,y,c; if(0 = nops(b)) then RETURN([]); fi; a := []; c := 0; p := b[1]; for y in b do if(y <> p) then a := [op(a),c]; c := 0; p := y; fi; c := c+1; od; RETURN([op(a),c]); end;
    find_sqrt := proc(x) local n,i,y; n := nops(x); if(n < 2) then RETURN(0); fi; if((2 = n) and (`^` = op(0,x)) and (1/2 = op(2,x))) then RETURN(op(1,x)); else for i from 0 to n do y := find_sqrt(op(i,x)); if(y <> 0) then RETURN(y); fi; od; RETURN(0); fi; end;

Extensions

Description clarified by Antti Karttunen, Aug 26 2006

A065934 Permutation of N induced by the order-preserving bijection QuQR1toQuQR2 on rationals.

Original entry on oeis.org

1, 5, 13, 2, 23, 25, 3, 9, 20, 11, 95, 49, 6, 223, 57, 4, 39, 80, 10, 45, 92, 47, 383, 97, 12, 415, 208, 55, 3583, 225, 29, 17, 36, 19, 159, 320, 40, 83, 42, 22, 183, 368, 46, 189, 380, 191, 1535, 193, 24, 799, 400, 103, 6655, 3328, 52, 220, 445, 895, 57343, 897
Offset: 1

Views

Author

Antti Karttunen, Dec 07 2001

Keywords

Comments

This permutation converts the domain between the mappings N2QuQR1 and N2QuQR2 given in A065936 and A065937, i.e. N2QuQR1(j) = N2QuQR2(a[j])

Crossrefs

Inverse permutation: A065935. For other needed Maple procedures, see A007305, A047679 and A054424. A065939[n] = a[A065938[n]].

Programs

  • Maple
    [seq(QuQR1toQuQR2(j),j=1..128)];
    QuQR1toQuQR2 := proc(n) local m; m := n + 2^floor_log_2(n); frac2position_in_whole_SB_tree(Q0_1toQ(SternBrocotTreeNum(m)/SternBrocotTreeDen(m))); end;
    Q0_1toQ := proc(rr) local r,i; r := rr; i := 0; while(r >= 1/2) do r := 2*(r-(1/2)); i := i+1; od; RETURN(i + (2*r)); end;

A065939 Position of sqrt(n) in the mapping N2QuQR2 given in A065937.

Original entry on oeis.org

1, 25, 223, 3, 3585, 14847, 30458, 8053063679, 7, 128849018881, 31588351, 134140418588671, 32178205, 129990652, 1318594171818636545920576603798101819391, 15
Offset: 1

Views

Author

Antti Karttunen, Dec 07 2001

Keywords

Crossrefs

a[n] = A065934[A065938[n]].

Programs

  • Maple
    [seq(QuQR1toQuQR2(frac2position_in_0_1_SB_tree(sqrt_n_confrac2binfrac(n))), n=1..40)];
Showing 1-4 of 4 results.