cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A065959 a(n) = n^3*Product_{distinct primes p dividing n} (1+1/p^3).

Original entry on oeis.org

1, 9, 28, 72, 126, 252, 344, 576, 756, 1134, 1332, 2016, 2198, 3096, 3528, 4608, 4914, 6804, 6860, 9072, 9632, 11988, 12168, 16128, 15750, 19782, 20412, 24768, 24390, 31752, 29792, 36864, 37296, 44226, 43344, 54432, 50654, 61740, 61544
Offset: 1

Views

Author

N. J. A. Sloane, Dec 08 2001

Keywords

Crossrefs

Sequences of the form n^k * Product_ {p|n, p prime} (1 + 1/p^k) for k=0..10: A034444 (k=0), A001615 (k=1), A065958 (k=2), this sequence (k=3), A065960 (k=4), A351300 (k=5), A351301 (k=6), A351302 (k=7), A351303 (k=8), A351304 (k=9), A351305 (k=10).

Programs

  • Mathematica
    JordanTotient[n_,k_:1] := DivisorSum[n, #^k * MoebiusMu[n/#] &]/;(n>0) && IntegerQ[n]; A065959[n_] := JordanTotient[n,6] / JordanTotient[n,3]; Array[A065959, 39] (* Enrique Pérez Herrero, Aug 22 2010 *)
    f[p_, e_] := p^(3*e) + p^(3*(e-1)); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Oct 12 2020 *)
  • PARI
    for(n=1,100,print1(n^3*sumdiv(n,d,moebius(d)^2/d^3),","))
    
  • PARI
    a(n)=sumdiv(n,d,moebius(n/d)^2*d^3); \\ Joerg Arndt, Jul 06 2011

Formula

Multiplicative with a(p^e) = p^(3*e)+p^(3*e-3). - Vladeta Jovovic, Dec 09 2001
a(n) = n^3*Sum_{d|n} mu(d)^2/d^3. - Benoit Cloitre, Apr 07 2002
a(n) = Sum_{d|n} mu(n/d)^2*d^3. - Joerg Arndt, Jul 06 2011
a(n) = J_6(n)/J_3(n) = A069091(n)/A059376(n). - Enrique Pérez Herrero, Aug 22 2010
Dirichlet g.f.: zeta(s)*zeta(s-3)/zeta(2*s). Dirichlet convolution of A008966 and A000578. - R. J. Mathar, Apr 10 2011
G.f.: Sum_{k>=1} mu(k)^2*x^k*(1 + 4*x^k + x^(2*k))/(1 - x^k)^4. - Ilya Gutkovskiy, Oct 24 2018
From Vaclav Kotesovec, Sep 19 2020: (Start)
Sum_{k=1..n} a(k) ~ 105*n^4 / (4*Pi^4).
Sum_{k>=1} 1/a(k) = Product_{primes p} (1 + p^3/(p^6-1)) = 1.18370753651668075930203278269930233284040397061087910806697928843547863257... (End)