A005446
Denominators of expansion of -W_{-1}(-e^{-1-x^2/2}) where W_{-1} is Lambert W function.
Original entry on oeis.org
1, 1, 3, 36, 270, 4320, 17010, 5443200, 204120, 2351462400, 1515591000, 2172751257600, 354648294000, 10168475885568000, 7447614174000, 1830325659402240000, 1595278956070800000, 2987091476144455680000
Offset: 0
1, 1/3, 1/36, -1/270, 1/4320, 1/17010, -139/5443200, 1/204120, -571/2351462400, ...
G.f.: A(x) = 1 + x + 1/3*x^2 + 1/36*x^3 - 1/270*x^4 + 1/4320*x^5 + 1/17010*x^6 - 139/5443200*x^7 + 1/204120*x^8 + ... + A005447(n)/A005446(n)x^n + ...
- E. T. Copson, An Introduction to the Theory of Functions of a Complex Variable, 1935, Oxford University Press, p. 221.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..100
- J. M. Borwein and R. M. Corless, Emerging Tools for Experimental Mathematics, Amer. Math. Monthly, 106 (No. 10, 1999), 889-909.
- G. Marsaglia and J. C. W. Marsaglia, A new derivation of Stirling's approximation to n!, Amer. Math. Monthly, 97 (1990), 827-829.
- J. C. W. Marsaglia, The incomplete gamma function and Ramanujan's rational approximation to exp(x), J. Statist. Comput. Simulation, 24 (1986), 163-168. [_N. J. A. Sloane_, Jun 23 2011]
-
Maple program from N. J. A. Sloane, Jun 23 2011, based on J. Marsaglia's 1986 paper:
a[1]:=1;
M:=25;
for n from 2 to M do
t1:=a[n-1]/(n+1)-add(a[k]*a[n+1-k],k=2..floor(n/2));
if n mod 2 = 1 then t1:=t1-a[(n+1)/2]^2/2; fi;
a[n]:=t1;
od:
s1:=[seq(a[n],n=1..M)];
-
terms = 18; Assuming[x > 0, -ProductLog[-1, -Exp[-1 - x^2/2]] + O[x]^terms] // CoefficientList[#, x]& // Take[#, terms]& // Denominator (* Jean-François Alcover, Jun 20 2013, updated Feb 21 2018 *)
-
a(n)=local(A); if(n<1,n==0,A=vector(n,k,1); for(k=2,n,A[k]=(A[k-1]-sum(i=2,k-1,i*A[i]*A[k+1-i]))/(k+1)); denominator(A[n])) /* Michael Somos, Jun 09 2004 */
-
a(n)=if(n<1,n==0,denominator(polcoeff(serreverse(sqrt(2*(x-log(1+x+x^2*O(x^n))))),n))) /* Michael Somos, Jun 09 2004 */
-
@CachedFunction
def b(n): return 1 if (n<2) else (1/(n+1))*( b(n-1) - sum( j*b(n-j+1)*b(j) for j in range(2,n) ))
def A005446(n): return denominator((-1)^n*b(n))
[A005446(n) for n in range(31)] # G. C. Greubel, Nov 21 2022
A005447
Numerators of the expansion of -W_{-1}(-e^(-1 - x^2/2)) where x > 0 and W_{-1} is the Lambert W function.
Original entry on oeis.org
1, 1, 1, 1, -1, 1, 1, -139, 1, -571, -281, 163879, -5221, 5246819, 5459, -534703531, 91207079, -4483131259, -2650986803, 432261921612371, -6171801683, 6232523202521089, 4283933145517, -25834629665134204969, 11963983648109
Offset: 0
G.f.: A(x) = 1 + x + (1/3)*x^2 + (1/36)*x^3 - (1/270)*x^4 + (1/4320)*x^5 + (1/17010)*x^6 - (139/5443200)*x^7 + (1/204120)*x^8 + ... + (A005447(n)/A005446(n))*x^n + ...
- E. T. Copson, An Introduction to the Theory of Functions of a Complex Variable, 1935, Oxford University Press, p. 221.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 0..100
- J. M. Borwein and R. M. Corless, Emerging Tools for Experimental Mathematics, Amer. Math. Monthly, 106 (No. 10, 1999), 889-909.
- G. Marsaglia and J. C. W. Marsaglia, A new derivation of Stirling's approximation to n!, Amer. Math. Monthly, 97 (1990), 827-829.
- NIST Digital Library of Mathematical Functions, Lambert W-Function, section 4.13.7
- J. C. W. Marsaglia, The incomplete gamma function and Ramanujan's rational approximation to exp(x), J. Statist. Comput. Simulation, 24 (1986), 163-168. [_N. J. A. Sloane_, Jun 23 2011]
-
h := proc(k) option remember; local j; `if`(k<=0,1,(h(k-1)/k-add((h(k-j)*h(j))/(j+1),j=1..k-1))/(1+1/(k+1))) end:
A005447 := n -> `if`(n<4,1,`if`(n=4,-1,numer(h(n-1))));
seq(A005447(i),i=0..24); # Peter Luschny, Feb 08 2011
# other program
a[1]:=1;
M:=25;
for n from 2 to M do
t1:=a[n-1]/(n+1)-add(a[k]*a[n+1-k],k=2..floor(n/2));
if n mod 2 = 1 then t1:=t1-a[(n+1)/2]^2/2; fi;
a[n]:=t1;
od:
s1:=[seq(a[n],n=1..M)]; # N. J. A. Sloane, Jun 23 2011, based on J. Marsaglia's 1986 paper
-
terms = 25; Assuming[x > 0, -ProductLog[-1, -Exp[-1 - x^2/2]] + O[x]^terms] // CoefficientList[#, x]& // Take[#, terms]& // Numerator (* Jean-François Alcover, Jun 20 2013, updated Feb 21 2018 *)
a[ n_] := If[ n < 0, 0, Block[ {$Assumptions = x < 0}, SeriesCoefficient[ -ProductLog[ -Exp[-1 - x^2/2]], {x, 0, n}] // Numerator]]; (* Michael Somos, Oct 06 2017 *)
-
{a(n) = my(A); if( n<1, n==0, A = vector(n, k, 1); for(k=2, n, A[k] = (A[k-1] - sum(i=2, k-1, i * A[i] * A[k+1-i])) / (k+1)); numerator(A[n]))}; /* Michael Somos, Jun 09 2004 */
-
{a(n) = if( n<1, n==0, numerator( polcoeff( serreverse(sqrt( 2 * (x - log(1 + x + x^2 * O(x^n))))), n)))}; /* Michael Somos, Jun 09 2004 */
-
@CachedFunction
def h(n): return 1 if (n<1) else ((n+1)/(n+2))*( h(n-1)/n - sum( h(n-j)*h(j)/(j+1) for j in range(1,n) ))
def A005447(n):
if (n<4): return 1
elif (n==4): return -1
else: return numerator(h(n-1))
[A005447(n) for n in range(31)] # G. C. Greubel, Nov 21 2022
A090804
Numerators in an asymptotic expansion of Ramanujan.
Original entry on oeis.org
2, -4, 8, 16, -8992, -334144, 698752, 23349012224, -1357305243136, -6319924923392, 8773495082018816, 49004477022654464, -1709650943378038784, -480380831834367035260928, 88481173388026066736939008, 660883915180095254454665216
Offset: 0
2/3, -4/135, 8/2835, 16/8505, -8992/12629925, -334144/492567075, 698752/1477701225, ...
- G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge, 1999; Problem 4, p. 616.
- B. C. Berndt, Ramanujan's Notebooks II, Springer, 1989; p. 181, Entry 48. See also pp. 184, 193ff.
- E. T. Copson, An Introduction to the Theory of Functions of a Complex Variable, Oxford Univ. Press, 1935; see p. 230, Problem 18.
- S. Ramanujan, Collected Papers, edited by G. H. Hardy et al., Cambridge, 1927, pp. 323-324, Question 294.
- G. C. Greubel, Table of n, a(n) for n = 0..160
- J. D. Buckholtz, Concerning an approximation of Copson, Proc. Amer. Math. Soc., 14 (1963), 564-568.
- K. P. Choi, On the medians of gamma distributions and an equation of Ramanujan, Proceedings of the American Mathematical Society 121:1 (May, 1994), pp. 245-251.
- J. C. W. Marsaglia, The incomplete gamma function and Ramanujan's rational approximation to exp(x), J. Statist. Comput. Simulation, 24 (1986), 163-168. [From _N. J. A. Sloane_, Jun 23 2011]
- Cormac O'Sullivan, Ramanujan's approximation to the exponential function and generalizations, arXiv:2205.08504 [math.NT], 2022.
-
# Maple program from N. J. A. Sloane, Jun 23 2011, based on J. Marsaglia's 1986 paper:
a[1]:=1;
M:=20;
for n from 2 to M do
t1:=a[n-1]/(n+1)-add(a[k]*a[n+1-k],k=2..floor(n/2));
if n mod 2 = 1 then t1:=t1-a[(n+1)/2]^2/2; fi;
a[n]:=t1;
od:
s1:=[seq(a[n],n=1..M)]; # This gives A005447/A005446
s2:=[seq(2^(n+1)*(n+1)!*a[2*n+2],n=0..M/2)]; # This gives A090804/A065973
# minor corrections by Peter Luschny, Nov 05 2015
-
Numerator@Table[(n+1)! SeriesCoefficient[-(ProductLog[-1, -Exp[-x^2-1]] + ProductLog[-Exp[-x^2-1]] + 1)/(2 x^2), {x, 0, 2n}, Assumptions -> x>0], {n, 0, 15}] (* Vladimir Reshetnikov, Nov 09 2015 *)
Numerator@Table[KroneckerDelta[n] + 2^n (3n+2)! Sum[((-1)^j 2^i StirlingS2[2n+i+j+1, j])/((2n+i+j+1)! (2n-i+1)! (i-j)! (n+i+1)), {i, 1, 2n+1}, {j, 1, i}], {n, 0, 15}] (* Vladimir Reshetnikov, Nov 09 2015 *)
-
{a(n) = my(A, m); if( n<1, n==0, n++; A = vector(m=2*n, k, 1); for(k=2, m, A[k] = (A[k-1] - sum(i=2, k-1, i * A[i] * A[k+1-i])) / (k + 1)); numerator(A[m] * 2^n * n!))}; /* Michael Somos, Jun 09 2004 */
A264148
Numerators of rational coefficients related to Stirling's asymptotic series for the Gamma function.
Original entry on oeis.org
1, 2, 1, -4, 1, 8, -139, 16, -571, -8992, 163879, -334144, 5246819, 698752, -534703531, 23349012224, -4483131259, -1357305243136, 432261921612371, -6319924923392, 6232523202521089, 8773495082018816, -25834629665134204969, 49004477022654464, -1579029138854919086429
Offset: 0
A001163(n) = numerator(SGGS(2*n)) = numerator(SGGS(2*n)/2^(n+1)).
A001164(n) = denominator(SGGS(2*n)).
A090804(n) = numerator(SGGS(2*n+1)).
A065973(n) = denominator(SGGS(2*n+1)) = denominator(SGGS(2*n+1)/2^(n+1)).
A005447(n+1) = numerator(SGGS(n)/2^(n+1)).
A264150(n) = numerator(SGGS(2*n+1)/2^(n+1)).
-
h := proc(k) option remember; local j; `if`(k<=0, 1,
(h(k-1)/k-add((h(k-j)*h(j))/(j+1), j=1..k-1))/(1+1/(k+1))) end:
SGGS := n -> h(n)*doublefactorial(n-1):
A264148 := n -> numer(SGGS(n)): seq(A264148(n), n=0..24);
-
h[k_] := h[k] = If[k <= 0, 1, (h[k - 1]/k - Sum[h[k - j]*h[j]/(j + 1), {j, 1, k - 1}]) / (1 + 1/(k + 1))]; a[n_] := h[n]* Factorial2[n - 1] // Numerator; Table[a[n], {n, 0, 24}]
-
def A264148(n):
@cached_function
def h(k):
if k<=0: return 1
S = sum((h(k-j)*h(j))/(j+1) for j in (1..k-1))
return (h(k-1)/k-S)/(1+1/(k+1))
return numerator(h(n)*(n-1).multifactorial(2))
print([A264148(n) for n in (0..17)])
A260306
Numerators in Ramanujan's asymptotic expansion of theta(n), defined by Sum_{k=0..n-1} n^k/k! + theta(n)*n^n/n! = exp(n)/2.
Original entry on oeis.org
1, 4, -8, -16, 8992, 334144, -698752, -23349012224, 1357305243136, 6319924923392, -8773495082018816, -49004477022654464, 1709650943378038784, 480380831834367035260928, -88481173388026066736939008, -660883915180095254454665216, 888962079683152174584309088256
Offset: 0
- G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge, 1999; Problem 4, p. 616.
- B. C. Berndt, Ramanujan's Notebooks II, Springer, 1989; p. 181, Entry 48. See also pp. 184, 193ff.
- E. T. Copson, An Introduction to the Theory of Functions of a Complex Variable, Oxford Univ. Press, 1935; see p. 230, Problem 18.
- S. Ramanujan, Collected Papers, edited by G. H. Hardy et al., Cambridge, 1927, pp. 323-324, Question 294.
- G. C. Greubel and D. Turner, Table of n, a(n) for n = 0..117
- K. P. Choi, On the medians of gamma distributions and an equation of Ramanujan, Proceedings of the American Mathematical Society 121:1 (May, 1994), pp. 245-251.
- J. C. W. Marsaglia, The incomplete gamma function and Ramanujan's rational approximation to exp(x), J. Statist. Comput. Simulation, 24 (1986), 163-168.
- Cormac O'Sullivan, Ramanujan's approximation to the exponential function and generalizations, arXiv:2205.08504 [math.NT], 2022.
-
h := proc(k) option remember; local j; `if`(k<=0, 1,
(h(k-1)/k-add((h(k-j)*h(j))/(j+1),j=1..k-1))/(1+1/(k+1))) end:
A260306 := n -> `if`(n=0, 1, -numer(h(2*n+1)*doublefactorial(2*n))):
seq(A260306(n), n=0..16); # Peter Luschny, Nov 20 2015
-
Numerator[Table[2^n*(3*n + 2)! * Sum[ Sum[ (-1)^(j + 1)*2^i*StirlingS2[2*n + i + j + 1, j]/((2*n + i + j + 1)!*(2*n - i + 1)!*(i - j)!*(n + i + 1)), {j, 1, i}], {i, 1, 2*n+1}], {n, 0, 20}]] (* Vaclav Kotesovec, Nov 20 2015 *)
A264150
Numerators of SGGS((2*n+1)/2^(n+1)) where the rational numbers SGGS(n) are defined in A264148.
Original entry on oeis.org
1, -1, 1, 1, -281, -5221, 5459, 91207079, -2650986803, -6171801683, 4283933145517, 11963983648109, -208697624924077, -29320119130515566117, 2700231121460756431181, 10084288256532215186381, -6782242429223267933535073, -51748587106835353426330148693
Offset: 0
-
h := proc(k) option remember; local j; `if`(k<=0, 1,
(h(k-1)/k-add((h(k-j)*h(j))/(j+1), j=1..k-1))/(1+1/(k+1))) end:
SGGS := n -> h(n)*doublefactorial(n-1):
A264150 := n -> numer(SGGS(2*n+1)/2^(n+1)): seq(A264150(n), n=0..17);
-
h[k_]:= h[k] = If[k <= 0, 1, (h[k - 1]/k - Sum[h[k - j]*h[j]/(j + 1), {j, 1, k - 1}])/(1 + 1/(k + 1))]; b[n_] := h[n]*Factorial2[n - 1]; Table[ Numerator[b[2*n + 1]/2^(n + 1)], {n,0,50}] (* G. C. Greubel, Feb 08 2018 *)
Showing 1-6 of 6 results.
Comments