A005447 Numerators of the expansion of -W_{-1}(-e^(-1 - x^2/2)) where x > 0 and W_{-1} is the Lambert W function.
1, 1, 1, 1, -1, 1, 1, -139, 1, -571, -281, 163879, -5221, 5246819, 5459, -534703531, 91207079, -4483131259, -2650986803, 432261921612371, -6171801683, 6232523202521089, 4283933145517, -25834629665134204969, 11963983648109
Offset: 0
Examples
G.f.: A(x) = 1 + x + (1/3)*x^2 + (1/36)*x^3 - (1/270)*x^4 + (1/4320)*x^5 + (1/17010)*x^6 - (139/5443200)*x^7 + (1/204120)*x^8 + ... + (A005447(n)/A005446(n))*x^n + ...
References
- E. T. Copson, An Introduction to the Theory of Functions of a Complex Variable, 1935, Oxford University Press, p. 221.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..100
- J. M. Borwein and R. M. Corless, Emerging Tools for Experimental Mathematics, Amer. Math. Monthly, 106 (No. 10, 1999), 889-909.
- G. Marsaglia and J. C. W. Marsaglia, A new derivation of Stirling's approximation to n!, Amer. Math. Monthly, 97 (1990), 827-829.
- NIST Digital Library of Mathematical Functions, Lambert W-Function, section 4.13.7
- J. C. W. Marsaglia, The incomplete gamma function and Ramanujan's rational approximation to exp(x), J. Statist. Comput. Simulation, 24 (1986), 163-168. [_N. J. A. Sloane_, Jun 23 2011]
Crossrefs
Programs
-
Maple
h := proc(k) option remember; local j; `if`(k<=0,1,(h(k-1)/k-add((h(k-j)*h(j))/(j+1),j=1..k-1))/(1+1/(k+1))) end: A005447 := n -> `if`(n<4,1,`if`(n=4,-1,numer(h(n-1)))); seq(A005447(i),i=0..24); # Peter Luschny, Feb 08 2011 # other program a[1]:=1; M:=25; for n from 2 to M do t1:=a[n-1]/(n+1)-add(a[k]*a[n+1-k],k=2..floor(n/2)); if n mod 2 = 1 then t1:=t1-a[(n+1)/2]^2/2; fi; a[n]:=t1; od: s1:=[seq(a[n],n=1..M)]; # N. J. A. Sloane, Jun 23 2011, based on J. Marsaglia's 1986 paper
-
Mathematica
terms = 25; Assuming[x > 0, -ProductLog[-1, -Exp[-1 - x^2/2]] + O[x]^terms] // CoefficientList[#, x]& // Take[#, terms]& // Numerator (* Jean-François Alcover, Jun 20 2013, updated Feb 21 2018 *) a[ n_] := If[ n < 0, 0, Block[ {$Assumptions = x < 0}, SeriesCoefficient[ -ProductLog[ -Exp[-1 - x^2/2]], {x, 0, n}] // Numerator]]; (* Michael Somos, Oct 06 2017 *)
-
PARI
{a(n) = my(A); if( n<1, n==0, A = vector(n, k, 1); for(k=2, n, A[k] = (A[k-1] - sum(i=2, k-1, i * A[i] * A[k+1-i])) / (k+1)); numerator(A[n]))}; /* Michael Somos, Jun 09 2004 */
-
PARI
{a(n) = if( n<1, n==0, numerator( polcoeff( serreverse(sqrt( 2 * (x - log(1 + x + x^2 * O(x^n))))), n)))}; /* Michael Somos, Jun 09 2004 */
-
SageMath
@CachedFunction def h(n): return 1 if (n<1) else ((n+1)/(n+2))*( h(n-1)/n - sum( h(n-j)*h(j)/(j+1) for j in range(1,n) )) def A005447(n): if (n<4): return 1 elif (n==4): return -1 else: return numerator(h(n-1)) [A005447(n) for n in range(31)] # G. C. Greubel, Nov 21 2022
Extensions
Edited by Michael Somos, Jul 21 2002
Comments