cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A005447 Numerators of the expansion of -W_{-1}(-e^(-1 - x^2/2)) where x > 0 and W_{-1} is the Lambert W function.

Original entry on oeis.org

1, 1, 1, 1, -1, 1, 1, -139, 1, -571, -281, 163879, -5221, 5246819, 5459, -534703531, 91207079, -4483131259, -2650986803, 432261921612371, -6171801683, 6232523202521089, 4283933145517, -25834629665134204969, 11963983648109
Offset: 0

Views

Author

Keywords

Comments

Numerators of the expansion of -W_0(-e^(-1 - x^2/2)) where x < 0 an W_0 is the principal branch of the Lambert W function. - Michael Somos, Oct 06 2017
See A299430/A299431 for more formulas; given g.f. A(x) = Sum_{n>=0} A005447(n)/A005446(n)*x^n, then A(x)^2 = Sum_{n>=0} A299430(n)/A299431(n)*x^n.

Examples

			G.f.: A(x) = 1 + x + (1/3)*x^2 + (1/36)*x^3 - (1/270)*x^4 + (1/4320)*x^5 + (1/17010)*x^6 - (139/5443200)*x^7 + (1/204120)*x^8 + ... + (A005447(n)/A005446(n))*x^n + ...
		

References

  • E. T. Copson, An Introduction to the Theory of Functions of a Complex Variable, 1935, Oxford University Press, p. 221.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A005446 (denominators), A090804/A065973.
Cf. A299430 / A299431 (A(x)^2), A299432 / A299433.

Programs

  • Maple
    h := proc(k) option remember; local j; `if`(k<=0,1,(h(k-1)/k-add((h(k-j)*h(j))/(j+1),j=1..k-1))/(1+1/(k+1))) end:
    A005447 := n -> `if`(n<4,1,`if`(n=4,-1,numer(h(n-1))));
    seq(A005447(i),i=0..24); # Peter Luschny, Feb 08 2011
    # other program
    a[1]:=1;
    M:=25;
    for n from 2 to M do
    t1:=a[n-1]/(n+1)-add(a[k]*a[n+1-k],k=2..floor(n/2));
    if n mod 2 = 1 then t1:=t1-a[(n+1)/2]^2/2; fi;
    a[n]:=t1;
    od:
    s1:=[seq(a[n],n=1..M)]; # N. J. A. Sloane, Jun 23 2011, based on J. Marsaglia's 1986 paper
  • Mathematica
    terms = 25; Assuming[x > 0, -ProductLog[-1, -Exp[-1 - x^2/2]] + O[x]^terms] // CoefficientList[#, x]& // Take[#, terms]& // Numerator (* Jean-François Alcover, Jun 20 2013, updated Feb 21 2018 *)
    a[ n_] := If[ n < 0, 0, Block[ {$Assumptions = x < 0}, SeriesCoefficient[ -ProductLog[ -Exp[-1 - x^2/2]], {x, 0, n}] // Numerator]]; (* Michael Somos, Oct 06 2017 *)
  • PARI
    {a(n) = my(A); if( n<1, n==0, A = vector(n, k, 1); for(k=2, n, A[k] = (A[k-1] - sum(i=2, k-1, i * A[i] * A[k+1-i])) / (k+1)); numerator(A[n]))}; /* Michael Somos, Jun 09 2004 */
    
  • PARI
    {a(n) = if( n<1, n==0, numerator( polcoeff( serreverse(sqrt( 2 * (x - log(1 + x + x^2 * O(x^n))))), n)))}; /* Michael Somos, Jun 09 2004 */
    
  • SageMath
    @CachedFunction
    def h(n): return 1 if (n<1) else ((n+1)/(n+2))*( h(n-1)/n - sum( h(n-j)*h(j)/(j+1) for j in range(1,n) ))
    def A005447(n):
        if (n<4): return 1
        elif (n==4): return -1
        else: return numerator(h(n-1))
    [A005447(n) for n in range(31)] # G. C. Greubel, Nov 21 2022

Formula

G.f.: A(x) = Sum_{n>=0} A005447(n)/A005446(n)*x^n satisfies log(A(x)) = A(x) - 1 - x^2/2.

Extensions

Edited by Michael Somos, Jul 21 2002

A065973 Denominators in an asymptotic expansion of Ramanujan.

Original entry on oeis.org

3, 135, 2835, 8505, 12629925, 492567075, 1477701225, 39565450299375, 2255230667064375, 6765692001193125, 7002491221234884375, 21007473663704653125, 441156946937797715625, 56995271759628775870171875
Offset: 0

Views

Author

N. J. A. Sloane, Dec 09 2001

Keywords

Examples

			-2/3, 4/135, -8/2835, -16/8505, 8992/12629925, 334144/492567075, -698752/1477701225, ...
		

References

  • G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge, 1999; Problem 4, p. 616.
  • B. C. Berndt, Ramanujan's Notebooks II, Springer, 1989; p. 181, Entry 48. See also pp. 184, 193ff.
  • E. T. Copson, An Introduction to the Theory of Functions of a Complex Variable, Oxford Univ. Press, 1935; see p. 230, Problem 18.
  • S. Ramanujan, Collected Papers, edited by G. H. Hardy et al., Cambridge, 1927, pp. 323-324, Question 294.

Crossrefs

Cf. A260306 (numerators), A090804, A005446, A005447.

Programs

  • Maple
    # Maple program from N. J. A. Sloane, Jun 23 2011, based on J. Marsaglia's 1986 paper:
    a[1]:=1;
    M:=20;
    for n from 2 to M do
    t1:=a[n-1]/(n+1)-add(a[k]*a[n+1-k],k=2..floor(n/2));
    if n mod 2 = 1 then t1:=t1-a[(n+1)/2]^2/2; fi;
    a[n]:=t1;
    od:
    s1:=[seq(a[n],n=1..M)]: # This gives A005447/A005446
    s2:=[seq(-2^(n+1)*(n+1)!*a[2*n+2],n=0..(M-2)/2)]: # This gives A090804/A065973
    map(denom,s2);
  • Mathematica
    Denominator[Table[2^n*(3*n + 2)! * Sum[ Sum[ (-1)^(j + 1)*2^i*StirlingS2[2*n + i + j + 1, j]/((2*n + i + j + 1)!*(2*n - i + 1)!*(i - j)!*(n + i + 1)), {j, 1, i}], {i, 1, 2*n+1}], {n, 0, 20}]] (* Vaclav Kotesovec, Nov 20 2015 *)
  • PARI
    a(n)=local(A,m); if(n<0,0,n++; A=vector(m=2*n,k,1); for(k=2,m,A[k]=(A[k-1]-sum(i=2,k-1,i*A[i]*A[k+1-i]))/(k+1)); denominator(A[m]*2^n*n!)) /* Michael Somos, Jun 09 2004 */

Formula

Define t_n by Sum_{k=0..n-1} n^k/k! + t_n*n^n/n! = exp(n)/2; then t_n ~ 1/3 + 4/(135*n) - 8/(2835*n^2) + ...
Integral_{0..infinity} exp(-x)*(1+x/n)^n dx = exp(n)*Gamma(n+1)/(2*n^n) + 2/3 - 4/(135*n) + 8/(2835*n^2) + 16/(8505*n^3) - 8992/(12629925*n^4) + ...

Extensions

Maple program edited by Robert Israel, Dec 15 2015

A299430 Numerators of coefficients in C(x) where: C(x)^(1/2) - S(x)^(1/2) = 1 such that C'(x)*S(x)^(1/2) = S'(x)*C(x)^(1/2) = 2*x*C(x).

Original entry on oeis.org

1, 2, 5, 13, 43, 5, -19, 41, 1, -7243, 923, 23183, -21401, 64243259, -73, -471741703, 328578883, -11162934047, -103170103, 405632121933911, -811862551, 6065578925646109, 2180051549129, -261709011005693843, 36779766732769, -1552304807519349743393, -33230318647573, 727642520296392573166003, -85602927913097260249, 3885938896026347271301517
Offset: 0

Views

Author

Paul D. Hanna, Feb 09 2018

Keywords

Comments

Given g.f. C(x) = Sum_{n>=0} A299430(n)/A299431(n)*x^n, then C(x)^(1/2) = Sum_{n>=0} A005447(n)/A005446(n)*x^n.

Examples

			G.f.: C(x) = 1 + 2*x + 5/3*x^2 + 13/18*x^3 + 43/270*x^4 + 5/432*x^5 - 19/17010*x^6 + 41/2721600*x^7 + 1/40824*x^8 - 7243/1175731200*x^9 + 923/1515591000*x^10 + ...
Related power series begin:
S(x) = x^2 + 2/3*x^3 + 1/6*x^4 + 1/90*x^5 - 1/810*x^6 + 1/15120*x^7 + 1/68040*x^8 - 139/24494400*x^9 + 1/1020600*x^10 - 571/12933043200*x^11 + ...
sqrt(C) = 1 + x + 1/3*x^2 + 1/36*x^3 - 1/270*x^4 + 1/4320*x^5 + 1/17010*x^6 - 139/5443200*x^7 + 1/204120*x^8 - 571/2351462400*x^9 - 281/1515591000*x^10 + ... + A005447(n)/A005446(n)*x^n + ...
		

Crossrefs

Cf. A299431 (denominators in C), A299432/A299433 (S), A005447/A005446 (sqrt(C)).

Programs

  • Mathematica
    terms = 30; Assuming[x>0, ProductLog[-1, -Exp[-1 - x^2/2]]^2 + O[x]^terms] // CoefficientList[#, x]& // Numerator (* Jean-François Alcover, Feb 22 2018 *)
  • PARI
    {a(n) = my(C=1, S=x^2); for(i=0,n, C = (1 + sqrt(S +O(x^(n+2))))^2; S = intformal( 2*x*sqrt(C) ) ); numerator(polcoeff(C,n))}
    for(n=0,30,print1(a(n),", "))

Formula

The functions C = C(x) and S = S(x) satisfy:
(1) sqrt(C) - sqrt(S) = 1.
(2a) C'*sqrt(S) = S'*sqrt(C) = 2*x*C.
(2b) C' = 2*x*C/sqrt(S).
(2c) S' = 2*x*sqrt(C).
(3a) C = 1 + Integral 2*x*C/sqrt(S) dx.
(3b) S = Integral 2*x*sqrt(C) dx.
(4a) sqrt(C) = exp( Integral x/(sqrt(C) - 1) dx ).
(4b) sqrt(S) = exp( Integral x/sqrt(S) dx ) - 1.
(5a) C - S = exp( Integral 2*x*C/(C*sqrt(S) + S*sqrt(C)) dx ).
(5b) C - S = exp( Integral C'*S'/(C*S' + S*C') dx).
(6a) sqrt(C) = exp( sqrt(C) - 1 - x^2/2 ).
(6b) sqrt(C) = 1 + x^2/2 + Integral x/(sqrt(C) - 1) dx.

A299431 Denominators of coefficients in C(x) where: C(x)^(1/2) - S(x)^(1/2) = 1 such that C'(x)*S(x)^(1/2) = S'(x)*C(x)^(1/2) = 2*x*C(x).

Original entry on oeis.org

1, 1, 3, 18, 270, 432, 17010, 2721600, 40824, 1175731200, 1515591000, 217275125760, 354648294000, 5084237942784000, 114578679600, 915162829701120000, 1595278956070800000, 298709147614445568000, 818378104464320400000, 168561571998831634022400000, 982053725357184480000, 45745017385529077294694400000, 279517041579788632620000000
Offset: 0

Views

Author

Paul D. Hanna, Feb 09 2018

Keywords

Comments

Given g.f. C(x) = Sum_{n>=0} A299430(n)/A299431(n)*x^n, then C(x)^(1/2) = Sum_{n>=0} A005447(n)/A005446(n)*x^n.

Examples

			G.f.: C(x) = 1 + 2*x + 5/3*x^2 + 13/18*x^3 + 43/270*x^4 + 5/432*x^5 - 19/17010*x^6 + 41/2721600*x^7 + 1/40824*x^8 - 7243/1175731200*x^9 + 923/1515591000*x^10 + ...
Related power series begin:
S(x) = x^2 + 2/3*x^3 + 1/6*x^4 + 1/90*x^5 - 1/810*x^6 + 1/15120*x^7 + 1/68040*x^8 - 139/24494400*x^9 + 1/1020600*x^10 - 571/12933043200*x^11 + ...
sqrt(C) = 1 + x + 1/3*x^2 + 1/36*x^3 - 1/270*x^4 + 1/4320*x^5 + 1/17010*x^6 - 139/5443200*x^7 + 1/204120*x^8 - 571/2351462400*x^9 - 281/1515591000*x^10 + ...
+ A005447(n)/A005446(n)*x^n + ...
		

Crossrefs

Cf. A299430 (numerators in C), A299432/A299433 (S), A005447/A005446 (sqrt(C)).

Programs

  • Mathematica
    terms = 30; Assuming[x>0, ProductLog[-1, -Exp[-1 - x^2/2]]^2 + O[x]^terms] // CoefficientList[#, x]& // Denominator (* Jean-François Alcover, Feb 22 2018 *)
  • PARI
    {a(n) = my(C=1, S=x^2); for(i=0,n, C = (1 + sqrt(S +O(x^(n+2))))^2; S = intformal( 2*x*sqrt(C) ) ); denominator(polcoeff(C,n))}
    for(n=0,30,print1(a(n),", "))

Formula

The functions C = C(x) and S = S(x) satisfy:
(1) sqrt(C) - sqrt(S) = 1.
(2a) C'*sqrt(S) = S'*sqrt(C) = 2*x*C.
(2b) C' = 2*x*C/sqrt(S).
(2c) S' = 2*x*sqrt(C).
(3a) C = 1 + Integral 2*x*C/sqrt(S) dx.
(3b) S = Integral 2*x*sqrt(C) dx.
(4a) sqrt(C) = exp( Integral x/(sqrt(C) - 1) dx ).
(4b) sqrt(S) = exp( Integral x/sqrt(S) dx ) - 1.
(5a) C - S = exp( Integral 2*x*C/(C*sqrt(S) + S*sqrt(C)) dx ).
(5b) C - S = exp( Integral C'*S'/(C*S' + S*C') dx).
(6a) sqrt(C) = exp( sqrt(C) - 1 - x^2/2 ).
(6b) sqrt(C) = 1 + x^2/2 + Integral x/(sqrt(C) - 1) dx.

A090804 Numerators in an asymptotic expansion of Ramanujan.

Original entry on oeis.org

2, -4, 8, 16, -8992, -334144, 698752, 23349012224, -1357305243136, -6319924923392, 8773495082018816, 49004477022654464, -1709650943378038784, -480380831834367035260928, 88481173388026066736939008, 660883915180095254454665216
Offset: 0

Views

Author

N. J. A. Sloane, Feb 11 2004

Keywords

Comments

2^(n+1) divides a(n). - Peter Luschny, Nov 05 2015

Examples

			2/3, -4/135, 8/2835, 16/8505, -8992/12629925, -334144/492567075, 698752/1477701225, ...
		

References

  • G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge, 1999; Problem 4, p. 616.
  • B. C. Berndt, Ramanujan's Notebooks II, Springer, 1989; p. 181, Entry 48. See also pp. 184, 193ff.
  • E. T. Copson, An Introduction to the Theory of Functions of a Complex Variable, Oxford Univ. Press, 1935; see p. 230, Problem 18.
  • S. Ramanujan, Collected Papers, edited by G. H. Hardy et al., Cambridge, 1927, pp. 323-324, Question 294.

Crossrefs

Cf. A065973 (denominators), A005446, A005447, A264148.

Programs

  • Maple
    # Maple program from N. J. A. Sloane, Jun 23 2011, based on J. Marsaglia's 1986 paper:
    a[1]:=1;
    M:=20;
    for n from 2 to M do
    t1:=a[n-1]/(n+1)-add(a[k]*a[n+1-k],k=2..floor(n/2));
    if n mod 2 = 1 then t1:=t1-a[(n+1)/2]^2/2; fi;
    a[n]:=t1;
    od:
    s1:=[seq(a[n],n=1..M)]; # This gives A005447/A005446
    s2:=[seq(2^(n+1)*(n+1)!*a[2*n+2],n=0..M/2)]; # This gives A090804/A065973
    # minor corrections by Peter Luschny, Nov 05 2015
  • Mathematica
    Numerator@Table[(n+1)! SeriesCoefficient[-(ProductLog[-1, -Exp[-x^2-1]] + ProductLog[-Exp[-x^2-1]] + 1)/(2 x^2), {x, 0, 2n}, Assumptions -> x>0], {n, 0, 15}] (* Vladimir Reshetnikov, Nov 09 2015 *)
    Numerator@Table[KroneckerDelta[n] + 2^n (3n+2)! Sum[((-1)^j 2^i StirlingS2[2n+i+j+1, j])/((2n+i+j+1)! (2n-i+1)! (i-j)! (n+i+1)), {i, 1, 2n+1}, {j, 1, i}], {n, 0, 15}]  (* Vladimir Reshetnikov, Nov 09 2015 *)
  • PARI
    {a(n) = my(A, m); if( n<1, n==0, n++; A = vector(m=2*n, k, 1); for(k=2, m, A[k] = (A[k-1] - sum(i=2, k-1, i * A[i] * A[k+1-i])) / (k + 1)); numerator(A[m] * 2^n * n!))}; /* Michael Somos, Jun 09 2004 */

Formula

Define t_n by Sum_{k=0..n-1} n^k/k! + t_n*n^n/n! = exp(n)/2; then t_n ~ 1/3 + 4/(135*n) - 8/(2835*n^2) + ...
Integral_{0..infinity} exp(-x)*(1+x/n)^n dx = exp(n)*Gamma(n+1)/(2*n^n) + 2/3 - 4/(135*n) + 8/(2835*n^2) + 16/(8505*n^3) - 8992/(12629925*n^4) + ...
From Vladimir Reshetnikov, Nov 09 2015: (Start)
Numerators/denominators: A090804(n)/A065973(n) = 0^n + 2^n * (3*n+2)! / (2*n+1)! * Sum_{i=1..2*n+1} Sum_{j=1..i} Sum_{k=1..j} (-1)^k * 2^i * k^(2*n+i+j+1) * C(2*n+1,i) * C(i,j) * C(j,k) / ((2*n+i+j+1)! * (n+i+1)), where C(n,k) = A007318(n,k) are binomial coefficients.
A090804(n)/A065973(n) = 0^n + 2^n * (3*n+2)! * Sum_{i=1..2*n+1} Sum_{j=1..i} (-1)^j * 2^i * stirling2(2*n+i+j+1,j) / ((2*n+i+j+1)! * (2*n-i+1)! * (i-j)! * (n+i+1)).
(End)

Extensions

a(0) corrected by Peter Luschny, Nov 05 2015

A299432 Numerators of coefficients in S(x) where: C(x)^(1/2) - S(x)^(1/2) = 1 such that C'(x)*S(x)^(1/2) = S'(x)*C(x)^(1/2) = 2*x*C(x).

Original entry on oeis.org

0, 0, 1, 2, 1, 1, -1, 1, 1, -139, 1, -571, -281, 163879, -5221, 5246819, 5459, -534703531, 91207079, -4483131259, -2650986803, 432261921612371, -6171801683, 6232523202521089, 4283933145517, -25834629665134204969, 11963983648109, -1579029138854919086429, -208697624924077, 746590869962651602203151, -29320119130515566117
Offset: 0

Views

Author

Paul D. Hanna, Feb 09 2018

Keywords

Examples

			G.f.: S(x) = x^2 + 2/3*x^3 + 1/6*x^4 + 1/90*x^5 - 1/810*x^6 + 1/15120*x^7 + 1/68040*x^8 - 139/24494400*x^9 + 1/1020600*x^10 - 571/12933043200*x^11 + ...
Related power series begin:
C(x) = 1 + 2*x + 5/3*x^2 + 13/18*x^3 + 43/270*x^4 + 5/432*x^5 - 19/17010*x^6 + 41/2721600*x^7 + 1/40824*x^8 - 7243/1175731200*x^9 + 923/1515591000*x^10 + ...
sqrt(C) = 1 + x + 1/3*x^2 + 1/36*x^3 - 1/270*x^4 + 1/4320*x^5 + 1/17010*x^6 - 139/5443200*x^7 + 1/204120*x^8 - 571/2351462400*x^9 - 281/1515591000*x^10 + ... + A005447(n)/A005446(n)*x^n + ...
		

Crossrefs

Cf. A299433 (denominators in S), A299430/A299431 (C), A005447/A005446 (sqrt(C)).

Programs

  • Mathematica
    terms = 30; c[x_] = Assuming[x > 0, ProductLog[-1, -Exp[-1 - x^2/2]]^2 + O[x]^terms]; Integrate[2*x*Sqrt[c[x]] + O[x]^terms, x] // CoefficientList[#, x] & // Numerator (* Jean-François Alcover, Feb 22 2018 *)
  • PARI
    {a(n) = my(C=1, S=x^2); for(i=0,n, C = (1 + sqrt(S +O(x^(n+2))))^2; S = intformal( 2*x*sqrt(C) ) ); numerator(polcoeff(S,n))}
    for(n=0,30,print1(a(n),", "))

Formula

The functions C = C(x) and S = S(x) satisfy:
(1) sqrt(C) - sqrt(S) = 1.
(2a) C'*sqrt(S) = S'*sqrt(C) = 2*x*C.
(2b) C' = 2*x*C/sqrt(S).
(2c) S' = 2*x*sqrt(C).
(3a) C = 1 + Integral 2*x*C/sqrt(S) dx.
(3b) S = Integral 2*x*sqrt(C) dx.
(4a) sqrt(C) = exp( Integral x/(sqrt(C) - 1) dx ).
(4b) sqrt(S) = exp( Integral x/sqrt(S) dx ) - 1.
(5a) C - S = exp( Integral 2*x*C/(C*sqrt(S) + S*sqrt(C)) dx ).
(5b) C - S = exp( Integral C'*S'/(C*S' + S*C') dx).
(6a) sqrt(C) = exp( sqrt(C) - 1 - x^2/2 ).
(6b) sqrt(C) = 1 + x^2/2 + Integral x/(sqrt(C) - 1) dx.

A299433 Denominators of coefficients in S(x) where: C(x)^(1/2) - S(x)^(1/2) = 1 such that C'(x)*S(x)^(1/2) = S'(x)*C(x)^(1/2) = 2*x*C(x).

Original entry on oeis.org

1, 1, 1, 3, 6, 90, 810, 15120, 68040, 24494400, 1020600, 12933043200, 9093546000, 14122883174400, 2482538058000, 76263569141760000, 59580913392000, 15557768104919040000, 14357510604637200000, 28377369023372328960000, 8183781044643204000000, 3539793011975464314470400000, 270064774473225732000000, 13677760198273194111113625600000
Offset: 0

Views

Author

Paul D. Hanna, Feb 09 2018

Keywords

Examples

			G.f.: S(x) = x^2 + 2/3*x^3 + 1/6*x^4 + 1/90*x^5 - 1/810*x^6 + 1/15120*x^7 + 1/68040*x^8 - 139/24494400*x^9 + 1/1020600*x^10 - 571/12933043200*x^11 + ...
Related power series begin:
C(x) = 1 + 2*x + 5/3*x^2 + 13/18*x^3 + 43/270*x^4 + 5/432*x^5 - 19/17010*x^6 + 41/2721600*x^7 + 1/40824*x^8 - 7243/1175731200*x^9 + 923/1515591000*x^10 + ...
sqrt(C) = 1 + x + 1/3*x^2 + 1/36*x^3 - 1/270*x^4 + 1/4320*x^5 + 1/17010*x^6 - 139/5443200*x^7 + 1/204120*x^8 - 571/2351462400*x^9 - 281/1515591000*x^10 + ... + A005447(n)/A005446(n)*x^n + ...
		

Crossrefs

Cf. A299432 (numerators in S), A299430/A299431 (C), A005447/A005446 (sqrt(C)).

Programs

  • Mathematica
    terms = 30; c[x_] = Assuming[x > 0, ProductLog[-1, -Exp[-1 - x^2/2]]^2 + O[x]^terms]; Integrate[2*x*Sqrt[c[x]] + O[x]^terms, x] // CoefficientList[#, x] & // Denominator (* Jean-François Alcover, Feb 22 2018 *)
  • PARI
    {a(n) = my(C=1, S=x^2); for(i=0,n, C = (1 + sqrt(S +O(x^(n+2))))^2; S = intformal( 2*x*sqrt(C) ) ); denominator(polcoeff(S,n))}
    for(n=0,30,print1(a(n),", "))

Formula

The functions C = C(x) and S = S(x) satisfy:
(1) sqrt(C) - sqrt(S) = 1.
(2a) C'*sqrt(S) = S'*sqrt(C) = 2*x*C.
(2b) C' = 2*x*C/sqrt(S).
(2c) S' = 2*x*sqrt(C).
(3a) C = 1 + Integral 2*x*C/sqrt(S) dx.
(3b) S = Integral 2*x*sqrt(C) dx.
(4a) sqrt(C) = exp( Integral x/(sqrt(C) - 1) dx ).
(4b) sqrt(S) = exp( Integral x/sqrt(S) dx ) - 1.
(5a) C - S = exp( Integral 2*x*C/(C*sqrt(S) + S*sqrt(C)) dx ).
(5b) C - S = exp( Integral C'*S'/(C*S' + S*C') dx).
(6a) sqrt(C) = exp( sqrt(C) - 1 - x^2/2 ).
(6b) sqrt(C) = 1 + x^2/2 + Integral x/(sqrt(C) - 1) dx.

A264148 Numerators of rational coefficients related to Stirling's asymptotic series for the Gamma function.

Original entry on oeis.org

1, 2, 1, -4, 1, 8, -139, 16, -571, -8992, 163879, -334144, 5246819, 698752, -534703531, 23349012224, -4483131259, -1357305243136, 432261921612371, -6319924923392, 6232523202521089, 8773495082018816, -25834629665134204969, 49004477022654464, -1579029138854919086429
Offset: 0

Views

Author

Peter Luschny, Nov 05 2015

Keywords

Comments

The rational numbers SGGS = A264148/A264149 (SGGS stands for 'Stirling Generalized Gamma Series') are a supersequence of the coefficients in Stirling's asymptotic series for the Gamma function A001163/A001164 and of an asymptotic expansion of Ramanujan A090804/A065973, further they appear in scaled form in an expansion of -W_{-1}(-e^{-1-x^2/2}) where W_{-1} is Lambert W function A005447/A005446.
Ramanujan's asymptotic expansion theta(n) = 1/3+4/(135n)-8/(2835n^2)- ... is considered in the literature also in the form 1-theta(n) (see for example formula (5) in the Choi link). It is this form to which we refer here.

Crossrefs

A264148(n) = numerator(SGGS(n)).
A264149(n) = denominator(SGGS(n)).
A001163(n) = numerator(SGGS(2*n)) = numerator(SGGS(2*n)/2^(n+1)).
A001164(n) = denominator(SGGS(2*n)).
A090804(n) = numerator(SGGS(2*n+1)).
A065973(n) = denominator(SGGS(2*n+1)) = denominator(SGGS(2*n+1)/2^(n+1)).
A005447(n+1) = numerator(SGGS(n)/2^(n+1)).
A264150(n) = numerator(SGGS(2*n+1)/2^(n+1)).

Programs

  • Maple
    h := proc(k) option remember; local j; `if`(k<=0, 1,
    (h(k-1)/k-add((h(k-j)*h(j))/(j+1), j=1..k-1))/(1+1/(k+1))) end:
    SGGS := n -> h(n)*doublefactorial(n-1):
    A264148 := n -> numer(SGGS(n)): seq(A264148(n), n=0..24);
  • Mathematica
    h[k_] := h[k] = If[k <= 0, 1, (h[k - 1]/k - Sum[h[k - j]*h[j]/(j + 1), {j, 1, k - 1}]) / (1 + 1/(k + 1))]; a[n_] := h[n]* Factorial2[n - 1] // Numerator; Table[a[n], {n, 0, 24}]
  • Sage
    def A264148(n):
        @cached_function
        def h(k):
            if k<=0: return 1
            S = sum((h(k-j)*h(j))/(j+1) for j in (1..k-1))
            return (h(k-1)/k-S)/(1+1/(k+1))
        return numerator(h(n)*(n-1).multifactorial(2))
    print([A264148(n) for n in (0..17)])

Formula

Let SGGS(n) = h(n)*doublefactorial(n-1) where h(n) = 1 for n<=0 and for n>0 defined by the recurrence (h(k-1)/k - Sum_{j=1..k-1}((h(k-j)*h(j))/(j+1))/ (1+1/(k+1))) then a(n) = numerator(SGGS(n)).

A260306 Numerators in Ramanujan's asymptotic expansion of theta(n), defined by Sum_{k=0..n-1} n^k/k! + theta(n)*n^n/n! = exp(n)/2.

Original entry on oeis.org

1, 4, -8, -16, 8992, 334144, -698752, -23349012224, 1357305243136, 6319924923392, -8773495082018816, -49004477022654464, 1709650943378038784, 480380831834367035260928, -88481173388026066736939008, -660883915180095254454665216, 888962079683152174584309088256
Offset: 0

Views

Author

Vladimir Reshetnikov, Nov 10 2015

Keywords

Comments

Let Sum_{k=0..n-1} n^k/k! + theta(n)*n^n/n! = exp(n)/2. Ramanujan gave initial terms of the asymptotic expansion theta(n) = 1/3 + (4/135)/n + (-8/2835)/n^2 + (-16/8505)/n^3 + O(1/n^4). This sequence gives the numerators in this expansion, and A065973 gives the denominators.
Ramanujan's asymptotic is also considered in the literature in the form 1-theta(n) (see for example formula (5) in the Choi link). The numerators that appear in that form are given in A090804 (the denominators are the same). The first term A090804(0) = 2 is different, and signs of other terms are opposite to a(n).

References

  • G. E. Andrews, R. Askey and R. Roy, Special Functions, Cambridge, 1999; Problem 4, p. 616.
  • B. C. Berndt, Ramanujan's Notebooks II, Springer, 1989; p. 181, Entry 48. See also pp. 184, 193ff.
  • E. T. Copson, An Introduction to the Theory of Functions of a Complex Variable, Oxford Univ. Press, 1935; see p. 230, Problem 18.
  • S. Ramanujan, Collected Papers, edited by G. H. Hardy et al., Cambridge, 1927, pp. 323-324, Question 294.

Crossrefs

Cf. A065973 (denominators), A090804, A264148, A005447, A005446.

Programs

  • Maple
    h := proc(k) option remember; local j; `if`(k<=0, 1,
    (h(k-1)/k-add((h(k-j)*h(j))/(j+1),j=1..k-1))/(1+1/(k+1))) end:
    A260306 := n -> `if`(n=0, 1, -numer(h(2*n+1)*doublefactorial(2*n))):
    seq(A260306(n), n=0..16); # Peter Luschny, Nov 20 2015
  • Mathematica
    Numerator[Table[2^n*(3*n + 2)! * Sum[ Sum[ (-1)^(j + 1)*2^i*StirlingS2[2*n + i + j + 1, j]/((2*n + i + j + 1)!*(2*n - i + 1)!*(i - j)!*(n + i + 1)), {j, 1, i}], {i, 1, 2*n+1}], {n, 0, 20}]] (* Vaclav Kotesovec, Nov 20 2015 *)

Formula

Numerators/denominators: a(n)/A065973(n) = 2^n * (3*n+2)! / (2*n+1)! * Sum_{i=1..2*n+1} Sum_{j=1..i} Sum_{k=1..j} (-1)^(k+1) * 2^i * k^(2*n+i+j+1) * C(2*n+1,i) * C(i,j) * C(j,k) / ((2*n+i+j+1)! * (n+i+1)), where C(n,k) = A007318(n,k) are binomial coefficients.
a(n)/A065973(n) = 2^n * (3*n+2)! * Sum_{i=1..2*n+1} Sum_{j=1..i} (-1)^(j+1) * 2^i * stirling2(2*n+i+j+1,j) / ((2*n+i+j+1)! * (2*n-i+1)! * (i-j)! * (n+i+1)).

Extensions

More terms from Vaclav Kotesovec, Nov 20 2015

A177677 The maximum integer dimension in which the volume of the hypersphere of radius n remains larger than 1.

Original entry on oeis.org

12, 62, 147, 266, 419, 607, 828, 1084, 1375, 1699, 2057, 2450, 2877, 3338, 3833, 4362, 4926, 5523, 6155, 6821, 7521, 8256, 9024, 9827, 10664, 11535, 12440, 13379, 14353, 15360, 16402, 17478, 18588, 19732, 20911, 22123, 23370, 24651, 25966, 27315
Offset: 1

Views

Author

Michel Lagneau, May 10 2010

Keywords

Comments

The volume of the d-dimensional hypersphere of radius n is V= Pi^(d/2) * n^d / Gamma(1 + d/2).
For fixed radius, V -> 0 as d->infinity, so there is a dimension d for which V(n,d) > 1 but V(n,d+1) < 1, which defines the entry in the sequence.

Examples

			a(n=2)=62 because Pi^(62/2) * 2^62/GAMMA(1 + (62/2)) =1.447051 and Pi^(63/2)* 2^63 / Gamma(1 + (63/2)) =0.9103541.
		

Crossrefs

Programs

  • Maple
    with(numtheory): n0:=50: T:=array(1..n0): for r from 1 to n0 do: x:=2: for n from 1 to 1000000 while(x>=1) do: x:= floor(evalf((r^n * Pi^(n/2))/GAMMA(1 + n/2))):k:=n:od:T[r]:=k-1:od:print(T):

Formula

a(n) = max {d: Pi^d/2 * n^d / Gamma(1+d/2) > 1}.

Extensions

Use of variables standardized. Definition simplified, comments tightened, unspecific reference and superfluous parentheses removed - R. J. Mathar, Oct 20 2010
Showing 1-10 of 10 results.