A066044 Numbers k that are repdigits in more bases (smaller than k) than any smaller number.
1, 3, 7, 15, 24, 40, 60, 120, 180, 336, 360, 720, 840, 1260, 1440, 1680, 2520, 5040, 7560, 10080, 15120, 20160, 25200, 27720, 45360, 50400, 55440, 83160, 110880, 166320, 221760, 277200, 332640, 498960, 554400, 665280, 720720, 1081080, 1441440, 2162160, 2882880
Offset: 1
Examples
15 is in the sequence since 15 = 1111_2 = 33_4 = 11_14 and no smaller number is a repdigit in 3 different bases.
References
- D. Lignon, Dictionnaire de (presque) tous les nombres entiers, Editions Ellipses, 2012, see p. 420. [In French.]
Links
- Giovanni Resta, Table of n, a(n) for n = 1..92
Programs
-
Mathematica
a = 0 Range[100]; Do[ c = 1; k = 2; While[ k < n-1, If[ Length[ Union[ IntegerDigits[n, k]]] == 1, c++ ]; k++ ]; If[a[[c]] == 0, a[[c]] = n; Print[c, " = ", n]], {n, 1, 200000} ]
-
PARI
okrepu3(b, target, lim) = {my(k = 3, nb = 0, x); while ((x=(b^k-1)/(b-1)) <= target, if (x==target, nb++); k++); nb;} dge3(n, d) = {my(nb=0, ndi, limi); for (i=1, #d, ndi = n/d[i]; limi = sqrtint(ndi); for (k=d[i]+1, limi, nb += okrepu3(k, ndi, limi););); nb;} deq2(n, d) = {my(nb=0, nk); for (k=1, #d\2, nk = (n - d[k])/d[k]; if (nk > d[k], nb++);); nb;} beta23(n) = {if (n<3, return (0)); my(d=divisors(n)); deq2(n, d) + dge3(n, d);} lista(nn) = {my(m = -1, nm); for (n=1, nn, if ((nm=beta23(n)) > m, print1(n, ", "); m = nm););} \\ Michel Marcus, Jul 13 2019
Extensions
More terms from Robert G. Wilson v, Jan 02 2002
Offset changed to 1 by Giovanni Resta, Apr 05 2017
a(1) changed to 1 and new terms a(32)-a(41) from Giovanni Resta, Apr 05 2017
Comments