cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066110 Primes of the form sigma_4(k)/sigma_2(k), arising in A066109.

Original entry on oeis.org

13, 73, 313, 601, 28393, 83233, 922561, 3416953, 13842121, 47451433, 141146281, 212601841, 234750601, 294482761, 2750006041, 3262751521, 4362404353, 4784281393, 5236041961, 9354855121, 9597826993, 13564461457, 16936647121
Offset: 1

Views

Author

Labos Elemer, Dec 05 2001

Keywords

Examples

			For k = 20: divisors(20) = {20,10,5,4,2,1}, sigma_4(20) = 160000 + 10000 + 625 + 256 + 16 + 1 = 170898, sigma_2(20) = 400 + 100 + 25 + 16 + 4 + 1 = 546; p = 170898/546 = 73 is prime, the 2nd term.
		

Crossrefs

Programs

  • Mathematica
    Do[s=DivisorSigma[4, n]; z=DivisorSigma[2, n]; If[PrimeQ[s/z], Print[s/z]], {n, 1, 10000000}]
    Select[Table[DivisorSigma[4,n]/DivisorSigma[2,n],{n,200000}],PrimeQ] (* Harvey P. Dale, Jan 31 2022 *)
  • PARI
    { n=0; for (m=1, 10^9, if (frac(f=sigma(m, 4)/sigma(m, 2)), next); if (isprime(f), write("b066110.txt", n++, " ", f); if (n==250, return)) ) } \\ Harry J. Smith, Feb 01 2010

Formula

Primes of the form A001159(A066109(k))/A001157(A066109(k)).