cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A054546 First differences of nonprimes (including 0 and 1, A002808).

Original entry on oeis.org

1, 3, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 2
Offset: 1

Views

Author

G. L. Honaker, Jr., Apr 09 2000

Keywords

Comments

Sum of first n terms equals n-th nonprime number.
First differences of A141468. - Omar E. Pol, Oct 21 2011

Crossrefs

Programs

  • Mathematica
    t=Flatten[Position[Table[PrimeQ[w], {w, 2, 256}], False]]+1 Delete[t-RotateRight[t], 1]
    Differences[Select[Range[0,200],!PrimeQ[#]&]] (* Harvey P. Dale, May 27 2018 *)

Formula

a(n) = A018252(n) - A141468(n). - Omar E. Pol, Oct 21 2011

Extensions

More terms from James Sellers, Apr 11 2000

A066111 Prime powers m such that sigma_4(m^2)/sigma_2(m^2) is prime.

Original entry on oeis.org

2, 3, 5, 13, 17, 31, 43, 61, 83, 109, 121, 125, 131, 229, 239, 257, 263, 269, 311, 313, 343, 361, 443, 463, 503, 571, 593, 599, 619, 641, 647, 653, 659, 701, 797, 811, 853, 953, 967, 1009, 1031, 1039, 1063, 1123, 1373, 1459, 1483, 1499, 1663, 1669, 1693
Offset: 1

Views

Author

Labos Elemer, Dec 06 2001

Keywords

Comments

Numbers m = p^w such that A001159(m^2)/A001157(m^2) is prime, i.e., m^2 is in A066109.
Also m is the square root of a term from A066109 (omitting the term 20). Apart from 20, up to 10000000 A066109 consists of squares of prime powers.

Examples

			m=125: m^2 = 15625 = A066109(13), sigma_4(15625) = 59700165039453751, sigma_2(15625) = 254313151, sigma_4/sigma_2 = 234750601 = A066110(13) is prime. Observe also that sigma_2 is close to sigma_4/sigma_2.
		

Crossrefs

Programs

  • PARI
    isok(m) = isprimepower(m) && isprime(sigma(m^2, 4)/sigma(m^2, 2)); \\ Michel Marcus, Apr 06 2020

A066112 Numbers k such that sigma_4(k)/sigma_2(k) is an integer but not a prime.

Original entry on oeis.org

1, 16, 36, 48, 49, 64, 81, 100, 121, 144, 162, 180, 196, 225, 245, 256, 324, 361, 400, 432, 441, 484, 500, 529, 576, 605, 625, 648, 676, 729, 784, 841, 900, 931, 980, 1024, 1089, 1156, 1200, 1225, 1280, 1296, 1369, 1444, 1521, 1600, 1620, 1681, 1764, 1805
Offset: 1

Views

Author

Labos Elemer, Dec 06 2001

Keywords

Examples

			The sequence includes squares, twice squares (such as 162 and 648), and other numbers (such as 48 and 180). The sigma_4/sigma_2 quotients usually have more than one distinct prime factor. Exception: sigma_4(48)/sigma_2(48) = 5732210/3410 = 1681 = 41^2.
		

Crossrefs

Programs

  • Mathematica
    Do[s=DivisorSigma[4, n]; z=DivisorSigma[2, n]; If[IntegerQ[s/z]&&!PrimeQ[s/z], Print[n]], {n, 1, 10000}]
  • PARI
    isok(k) = { my(f=sigma(k, 4)/sigma(k, 2)); !frac(f) && !isprime(f) } \\ Harry J. Smith, Feb 01 2010

Extensions

Edited by Jon E. Schoenfield, Dec 24 2016

A066134 Numbers from A066112 that are neither square nor twice a square, i.e., are not in A028982 but are in A028983.

Original entry on oeis.org

48, 180, 245, 432, 500, 605, 931, 980, 1200, 1280, 1620, 1805, 2205, 2352, 2420, 3380, 3724, 3888, 3920, 4500, 4655, 5445, 5780, 5808, 6125, 6845, 7203, 7220, 7936, 8112, 8379, 8405, 8820, 9072, 9251, 9680, 10580, 10800, 11520, 11760, 12500
Offset: 1

Views

Author

Labos Elemer, Dec 06 2001

Keywords

Examples

			180 is neither square nor twice a square, but sigma_4(180)/sigma_2(180) = 1135275414/49686 = 22849 = 73*313.
		

Crossrefs

Programs

  • Mathematica
    q[k_] := !IntegerQ[Sqrt[k]] && !IntegerQ[Sqrt[k/2]] && IntegerQ[r = DivisorSigma[4, k]/DivisorSigma[2, k]] && !PrimeQ[r]; Select[Range[12500], q] (* Amiram Eldar, Feb 23 2025 *)
  • PARI
    { n=0; for (m=1, 10^9, if (issquare(m) || issquare(m/2), next); if (frac(f=sigma(m, 4)/sigma(m, 2)), next); if (!isprime(f), write("b066134.txt", n++, " ", m); if (n==1000, return)) ) } \\ Harry J. Smith, Feb 02 2010
Showing 1-4 of 4 results.