cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066184 Sum of the first moments of all partitions of n with weight starting at 1.

Original entry on oeis.org

0, 1, 5, 13, 32, 61, 123, 208, 367, 590, 957, 1459, 2266, 3328, 4938, 7097, 10205, 14299, 20100, 27626, 38023, 51485, 69600, 92882, 123863, 163235, 214798, 280141, 364530, 470660, 606557, 776233, 991370, 1258827, 1594741, 2010142, 2528445, 3165648, 3955190
Offset: 0

Views

Author

Wouter Meeussen, Dec 15 2001

Keywords

Comments

The first element of each partition is given weight 1.

Examples

			a(3)=13 because the first moments of all partitions of 3 are {3}.{1},{2,1}.{1,2} and {1,1,1}.{1,2,3}, resulting in 3,4,6; summing to 13.
		

Crossrefs

Cf. A066185.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, [1, n],
          b(n, i-1)+(h-> h+[0, h[1]*i*(i+1)/2])(b(n-i, min(n-i, i))))
        end:
    a:= n-> b(n$2)[2]:
    seq(a(n), n=0..50);  # Alois P. Heinz, Jan 29 2014
  • Mathematica
    Table[ Plus@@ Map[ #.Range[ Length[ # ] ]&, IntegerPartitions[ n ] ], {n, 40} ]
    (* Second program: *)
    b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[i < 1, {0, 0}, If[i > n, b[n, i - 1], b[n, i - 1] + Function[h, h + {0, h[[1]]*i*(i + 1)/2}][b[n - i, i]]]]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Aug 29 2016, after Alois P. Heinz *)

Formula

a(n) = 1/2*(A066183(n) + A066186(n)). - Vladeta Jovovic, Mar 23 2003
G.f.: Sum_{k>=1} x^k/(1 - x^k)^3 / Product_{j>=1} (1 - x^j). - Ilya Gutkovskiy, Mar 05 2021
a(n) ~ 3 * zeta(3) * sqrt(n) * exp(Pi*sqrt(2*n/3)) / (sqrt(2) * Pi^3). - Vaclav Kotesovec, Jul 06 2025