A066184 Sum of the first moments of all partitions of n with weight starting at 1.
0, 1, 5, 13, 32, 61, 123, 208, 367, 590, 957, 1459, 2266, 3328, 4938, 7097, 10205, 14299, 20100, 27626, 38023, 51485, 69600, 92882, 123863, 163235, 214798, 280141, 364530, 470660, 606557, 776233, 991370, 1258827, 1594741, 2010142, 2528445, 3165648, 3955190
Offset: 0
Examples
a(3)=13 because the first moments of all partitions of 3 are {3}.{1},{2,1}.{1,2} and {1,1,1}.{1,2,3}, resulting in 3,4,6; summing to 13.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Crossrefs
Cf. A066185.
Programs
-
Maple
b:= proc(n, i) option remember; `if`(n=0 or i=1, [1, n], b(n, i-1)+(h-> h+[0, h[1]*i*(i+1)/2])(b(n-i, min(n-i, i)))) end: a:= n-> b(n$2)[2]: seq(a(n), n=0..50); # Alois P. Heinz, Jan 29 2014
-
Mathematica
Table[ Plus@@ Map[ #.Range[ Length[ # ] ]&, IntegerPartitions[ n ] ], {n, 40} ] (* Second program: *) b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[i < 1, {0, 0}, If[i > n, b[n, i - 1], b[n, i - 1] + Function[h, h + {0, h[[1]]*i*(i + 1)/2}][b[n - i, i]]]]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Aug 29 2016, after Alois P. Heinz *)
Formula
G.f.: Sum_{k>=1} x^k/(1 - x^k)^3 / Product_{j>=1} (1 - x^j). - Ilya Gutkovskiy, Mar 05 2021
a(n) ~ 3 * zeta(3) * sqrt(n) * exp(Pi*sqrt(2*n/3)) / (sqrt(2) * Pi^3). - Vaclav Kotesovec, Jul 06 2025
Comments