A066309 Numbers k such that k > (product of digits of k) * (sum of digits of k).
10, 11, 12, 13, 20, 21, 22, 30, 31, 32, 40, 41, 50, 51, 60, 61, 70, 71, 80, 81, 90, 91, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 130, 131, 132, 133, 134, 140, 141, 142
Offset: 1
Examples
13 is in the sequence because (1*3)*(1+3) = 3*4 = 12 < 13. 125 is a term because (1*2*5)*(1+2+5) = 10*8 = 80 < 125.
Links
- Harry J. Smith, Table of n, a(n) for n = 1..1000
Programs
-
ARIBAS
function a066312(a,b: integer); var n,k,j,p,d: integer; s: string; begin for n := a to b do s := itoa(n); k := 0; p := 1; for j := 0 to length(s) - 1 do d := atoi(s[j..j]); k := k + d; p := p*d; end; if n > p*k then write(n,","); end; end; end; a066312(0,150);
-
Mathematica
asum[x_] := Apply[Plus, IntegerDigits[x]] apro[x_] := Apply[Times, IntegerDigits[x]] sz[x_] := asu[x]*apro[x] Do[s=sz[n]; If[Greater[n, s], Print[n]], {n, 1, 1000}] okQ[n_]:=Module[{idn=IntegerDigits[n]},n> Total[idn]Times@@idn];Select[Range[150],okQ] (* Harvey P. Dale, Mar 12 2011 *)
-
PARI
isok(k) = {my(d=digits(k)); k > vecprod(d) * vecsum(d)} \\ Harry J. Smith, Feb 10 2010