cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066353 1 + partial sums of A032378.

Original entry on oeis.org

1, 3, 6, 10, 15, 21, 28, 38, 50, 64, 80, 98, 118, 140, 164, 190, 220, 253, 289, 328, 370, 415, 463, 514, 568, 625, 685, 748, 816, 888, 964, 1044, 1128, 1216, 1308, 1404, 1504, 1608, 1716, 1828, 1944, 2064, 2188, 2318, 2453, 2593, 2738, 2888
Offset: 0

Views

Author

N. J. A. Sloane, Dec 22 2001

Keywords

Comments

A032378 has been inspired by the Concrete Mathematics Casino problem (see reference).

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. 2nd Edition. Addison-Wesley, Reading, MA, 1994. Section 3.2, p74-76.

Crossrefs

Programs

  • Magma
    A032378:=[k*j: j in [(k^2+1)..(k^2+3*k+3)], k in [1..15]];
    [n eq 0 select 1 else 1+(&+[A032378[j]: j in [1..n]]): n in [0..100]]; // G. C. Greubel, Jul 20 2023
    
  • Mathematica
    A032378:= A032378= Table[k*j, {k,15}, {j,k^2+1, k^2+3*k+3}]//Flatten;
    A066353[n_]:= A066353[n]= 1 +Sum[A032378[[j+1]], {j,0,n-1}];
    Table[A066353[n], {n,0,100}] (* G. C. Greubel, Jul 20 2023 *)
    Accumulate[Join[{1},Select[Range[300],!IntegerQ[Surd[#,3]]&&Divisible[#,Floor[Surd[#,3]]]&]]] (* Harvey P. Dale, Jan 25 2025 *)
  • SageMath
    A032378=flatten([[k*j for j in range((k^2+1),(k^2+3*k+3)+1)] for k in range(1,15)])
    def A066353(n): return 1 if (n==0) else 1 + sum(A032378[j] for j in range(n))
    [A066353(n) for n in range(101)] # G. C. Greubel, Jul 20 2023

Formula

a(n) = 1 if n = 0, otherwise a(n) = A112873(n) = Sum_{j=1..n} A032378(j).