A066353 1 + partial sums of A032378.
1, 3, 6, 10, 15, 21, 28, 38, 50, 64, 80, 98, 118, 140, 164, 190, 220, 253, 289, 328, 370, 415, 463, 514, 568, 625, 685, 748, 816, 888, 964, 1044, 1128, 1216, 1308, 1404, 1504, 1608, 1716, 1828, 1944, 2064, 2188, 2318, 2453, 2593, 2738, 2888
Offset: 0
Keywords
References
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. 2nd Edition. Addison-Wesley, Reading, MA, 1994. Section 3.2, p74-76.
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
Programs
-
Magma
A032378:=[k*j: j in [(k^2+1)..(k^2+3*k+3)], k in [1..15]]; [n eq 0 select 1 else 1+(&+[A032378[j]: j in [1..n]]): n in [0..100]]; // G. C. Greubel, Jul 20 2023
-
Mathematica
A032378:= A032378= Table[k*j, {k,15}, {j,k^2+1, k^2+3*k+3}]//Flatten; A066353[n_]:= A066353[n]= 1 +Sum[A032378[[j+1]], {j,0,n-1}]; Table[A066353[n], {n,0,100}] (* G. C. Greubel, Jul 20 2023 *) Accumulate[Join[{1},Select[Range[300],!IntegerQ[Surd[#,3]]&&Divisible[#,Floor[Surd[#,3]]]&]]] (* Harvey P. Dale, Jan 25 2025 *)
-
SageMath
A032378=flatten([[k*j for j in range((k^2+1),(k^2+3*k+3)+1)] for k in range(1,15)]) def A066353(n): return 1 if (n==0) else 1 + sum(A032378[j] for j in range(n)) [A066353(n) for n in range(101)] # G. C. Greubel, Jul 20 2023
Comments