A066360 Number of unordered solutions in positive integers of xy + xz + yz = n with gcd(x,y,z) = 1.
0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 2, 1, 2, 0, 2, 1, 2, 0, 3, 2, 1, 2, 2, 0, 3, 0, 3, 2, 2, 1, 4, 1, 1, 2, 4, 2, 4, 0, 2, 2, 2, 1, 5, 2, 2, 2, 4, 1, 3, 2, 4, 4, 2, 0, 6, 0, 3, 3, 4, 2, 4, 2, 2, 3, 4, 0, 7, 2, 2, 4, 4, 2, 4, 0, 5, 4, 3, 1, 6, 2, 2, 4, 6, 2, 6, 2, 4, 2, 2, 3, 8, 4, 2, 3, 4, 1
Offset: 1
Examples
a(81) = 3 because we have the triples (x,y,z) = (1,1,40),(2,3,15),(3,6,7) (and not (3,3,12) because this is not primitive).
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a066360 n = length [(x,y,z) | x <- [1 .. a000196 n], y <- [x .. div n x], z <- [y .. n - x*y], x*y+(x+y)*z == n, gcd (gcd x y) z == 1] -- Reinhard Zumkeller, Mar 23 2012
-
Mathematica
Table[cnt=0; Do[z=(n-x*y)/(x+y); If[IntegerQ[z] && GCD[x,y,z]==1, cnt++ ], {x,Sqrt[n/3]}, {y,x,Sqrt[x^2+n]-x}]; cnt, {n,100}] (* T. D. Noe, Jun 14 2006 *)
Extensions
Corrected and extended by T. D. Noe, Jun 14 2006
Comments