cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066373 a(n) = (3*n-2)*2^(n-3).

Original entry on oeis.org

2, 7, 20, 52, 128, 304, 704, 1600, 3584, 7936, 17408, 37888, 81920, 176128, 376832, 802816, 1703936, 3604480, 7602176, 15990784, 33554432, 70254592, 146800640, 306184192, 637534208, 1325400064, 2751463424, 5704253440, 11811160064, 24427626496, 50465865728, 104152956928
Offset: 2

Views

Author

N. J. A. Sloane, Jan 04 2002

Keywords

Comments

An elephant sequence, see A175654. For the corner squares 16 A[5] vectors, with decimal values between 59 and 440, lead to this sequence (with a leading 1 added). For the central square these vectors lead to the companion sequence A098156 (without a(1)). - Johannes W. Meijer, Aug 15 2010
a(n) is the total number of 1's in runs of 1's of length >= 2 over all binary words with n bits. - Félix Balado, Jan 15 2024

Crossrefs

Column k=2 of A229079.

Programs

  • Maple
    seq((3*n-2)*2^(n-3),n=2..30); # Emeric Deutsch, Jul 23 2006
  • Mathematica
    Array[(3 # - 2)*2^(# - 3) &, 28, 2] (* or *)
    Drop[CoefficientList[Series[x^2*(2 - x)/(1 - 2 x)^2, {x, 0, 29}], x], 2] (* Michael De Vlieger, Jun 30 2018 *)
  • PARI
    a(n) = { (3*n - 2)*2^(n - 3) } /* Harry J. Smith, Feb 11 2010 */

Formula

G.f.: x^2*(2-x)/(1-2x)^2. - Emeric Deutsch, Jul 23 2006
a(n) = 2*a(n-1) +3*2^(n-3). - Vincenzo Librandi, Mar 20 2011
a(n+1) - a(n) = A098156(n). - R. J. Mathar, Apr 25 2013
From Paul Curtz, Jun 29 2018: (Start)
a(n) = A130129(n-2) - A130129(n-3) for n >= 2.
Binomial transform of A016789.
Inverse binomial transform of A288834.
Also the main diagonal of the difference table of m -> (-1)^m*(m+2).
2, -3, 4, -5, ...
-5, 7, -9, 11, ...
12, -16, 20, -24, ...
-28, 36, -44, 52, ... . (End)