A066383 a(n) = Sum_{k=0..n} C(n*(n+1)/2,k).
1, 2, 7, 42, 386, 4944, 82160, 1683218, 40999516, 1156626990, 37060382822, 1328700402564, 52676695500313, 2287415069586304, 107943308165833912, 5499354613856855290, 300788453960472434648, 17577197510240126035698, 1092833166733915284972350
Offset: 0
Keywords
Examples
From _Gus Wiseman_, Feb 14 2024: (Start) The a(0) = 1 through a(2) = 7 loop-graphs (loops shown as singletons): {} {} {} {{1}} {{1}} {{2}} {{1,2}} {{1},{2}} {{1},{1,2}} {{2},{1,2}} (End)
Links
- Harry J. Smith, Table of n, a(n) for n = 0..100
Crossrefs
Programs
-
Mathematica
f[n_] := Sum[Binomial[n (n + 1)/2, k], {k, 0, n}]; Array[f, 21, 0] (* Vincenzo Librandi, May 06 2016 *) Table[Length[Select[Subsets[Subsets[Range[n],{1,2}]],Length[#]<=n&]],{n,0,5}] (* Gus Wiseman, Feb 14 2024 *)
-
PARI
{ for (n=0, 100, a=0; for (k=0, n, a+=binomial(n*(n + 1)/2, k)); write("b066383.txt", n, " ", a) ) } \\ Harry J. Smith, Feb 12 2010
-
Python
from math import comb def A066383(n): return sum(comb(comb(n+1,2),k) for k in range(n+1)) # Chai Wah Wu, Jul 10 2024
Formula
a(n) = 2^(n*(n+1)/2) - binomial(n*(n+1)/2,n+1)*2F1(1,(-n^2+n+2)/2;n+2;-1) = A006125(n) - A116508(n+1) * 2F1(1,(-n^2+n+2)2;n+2;-1), where 2F1(a,b;c;x) is the hypergeometric function. - Ilya Gutkovskiy, May 06 2016
a(n) ~ exp(n) * n^(n - 1/2) / (sqrt(Pi) * 2^(n + 1/2)). - Vaclav Kotesovec, Feb 20 2024
Comments