cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066398 Reversion of g.f. (with constant term included) for partition numbers.

Original entry on oeis.org

1, -1, 0, 2, -3, 0, 5, 0, -21, 14, 117, -342, 210, 935, -2565, 1864, 2751, -3945, -8074, 4046, 108927, -333832, 246895, 887040, -2764795, 3062749, -1372098, 4775900, -9367698, -55130625, 299939766, -537241936, -140898285, 2464380030, -4060507784, 193070394
Offset: 0

Views

Author

N. J. A. Sloane, Dec 25 2001

Keywords

Comments

See A301624 for the corresponding series reversion for the plane partition numbers A000219. - Peter Bala, Feb 09 2020

Crossrefs

Programs

  • Maple
    with(numtheory):
    Order := 36:
    Gser := solve(series(x*exp(add(sigma[1](n)*x^n/n, n = 1..35)), x) = y, x):
    seq(coeff(Gser, y^k), k = 1..35); # Peter Bala, Feb 09 2020
  • Mathematica
    nmax = 34; sol = {a[0] -> 1};
    Do[A[x_] = Sum[a[k] x^k, {k, 0, n}] /. sol; eq = CoefficientList[A[x] - Product[ 1 - x^k*A[x]^k, {k, 1, n}] + O[x]^(n + 1), x] == 0 /. sol; sol = sol ~Join~ Solve[eq][[1]], {n, 1, nmax}];
    sol /. Rule -> Set;
    a /@ Range[0, nmax] (* Jean-François Alcover, Nov 02 2019 *)

Formula

The o.g.f. A(x) = 1 - x + 2*x^3 - 3*x^4 + 5*x^6 - ... satisfies [x^n](1/A(x))^n = sigma(n) = A000203(n) for n >= 1. - Peter Bala, Aug 23 2015
G.f. A(x) satisfies: A(x) = Product_{k>=1} (1 - x^k*A(x)^k). - Ilya Gutkovskiy, Mar 21 2018