cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A000162 Number of 3-dimensional polyominoes (or polycubes) with n cells.

Original entry on oeis.org

1, 1, 2, 8, 29, 166, 1023, 6922, 48311, 346543, 2522522, 18598427, 138462649, 1039496297, 7859514470, 59795121480, 457409613979, 3516009200564, 27144143923583, 210375361379518, 1636229771639924, 12766882202755783
Offset: 1

Views

Author

Keywords

Comments

Here two polycubes that differ by reflection are considered different. - Joerg Arndt, Apr 26 2023
Number of oriented polyominoes with n cubical cells of the regular tiling with Schläfli symbol {4,3,4}. For oriented polyominoes, chiral pairs are counted as two. - Robert A. Russell, Mar 21 2024

Examples

			Table showing total number and numbers with each group order.
-------------------------------------------------------------
The last 7 columns form sequences A066453, A066454, A066273, A066281, A066283, A066287, A066288.
.n ...A000162 ..group:.1.....2...3...4.6.8.24
.1 .........1..........0.....0...0...0.0.0..1
.2 .........1..........0.....0...0...0.0.1..0
.3 .........2..........0.....1...0...0.0.1..0
.4 .........8..........1.....4...1...0.0.2..0
.5 ........29.........17....10...0...0.0.2..0
.6 .......166........127....34...0...3.1.1..0
.7 ......1023........941....71...4...5.0.1..1
.8 ......6922.......6662...246...0..11.0.2..1
.9 .....48311......47771...522...3..11.0.4..0
10 ....346543.....344708..1783..24..24.2.2..0
11 ...2522522....2518713..3765...4..35.0.5..0
12 ..18598427...18585455.12858..18..84.5.7..0
13 .138462649..138434899.27496.151..92.2.8..1
14 1039496297.1039401564.94525..25.174.4.5..0
		

References

  • C. J. Bouwkamp, personal communication.
  • W. F. Lunnon, Symmetry of cubical and general polyominoes, pp. 101-108 of R. C. Read, editor, Graph Theory and Computing. Academic Press, NY, 1972.
  • W. F. Lunnon, personal communication.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A038119 (unoriented), A371397 (chiral), A007743 (achiral), A001931 (fixed).

Formula

a(n) = 2*A038119 - A007743.
a(n) = A000105 + A006759.
a(n) = A038119(n) + A371397(n) = 2*A371397(n) + A007743(n). - Robert A. Russell, Mar 21 2024

Extensions

The old value for a(11), 2522572, was corrected by Achim Flammenkamp to 2522522, Feb 15 1999.
a(13)-a(14) from Brendan Owen (brendan_owen(AT)yahoo.com), Dec 27 2001
a(15)-a(16) from Herman Jamke (hermanjamke(AT)fastmail.fm), May 05 2007
a(17)-a(20) from Stanley Dodds, Dec 11 2023
a(21)-a(22) (using Dodds's algorithm) from Phillip Thompson, Feb 07 2024

A066288 Number of 3-dimensional polyominoes (or polycubes) with n cells and rotational symmetry group of order exactly 24.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 2, 1, 0, 0
Offset: 1

Views

Author

Brendan Owen (brendan_owen(AT)yahoo.com), Jan 01 2002

Keywords

Comments

The sequence counts "one-sided" polycubes (A000162); chiral polycubes count twice. - John Mason, Sep 18 2024

References

  • W. F. Lunnon, Symmetry of cubical and general polyominoes, pp. 101-108 of R. C. Read, editor, Graph Theory and Computing. Academic Press, NY, 1972.

Crossrefs

Formula

a(n) = 2*R(n)+G(n), see Lunnon paper for naming convention. - John Mason, Sep 18 2024

Extensions

Name clarified and more terms from John Mason, Sep 18 2024

A066273 Number of 3-dimensional polyominoes (or polycubes) with n cells and rotational symmetry group of order exactly 3.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 4, 0, 3, 24, 4, 18, 151, 25, 136, 992, 184, 938, 6769, 1300, 6792, 47469
Offset: 1

Views

Author

Brendan Owen (brendan_owen(AT)yahoo.com), Jan 01 2002

Keywords

Comments

This sequence counts "one-sided" polycubes (A000162); chiral polycubes count twice. - John Mason, Sep 04 2024

References

  • W. F. Lunnon, Symmetry of cubical and general polyominoes, pp. 101-108 of R. C. Read, editor, Graph Theory and Computing. Academic Press, NY, 1972.

Crossrefs

Formula

a(n) = 2*D(n)+H(n)+FF(n), see Lunnon paper for naming convention. - John Mason, Sep 04 2024

Extensions

Name clarified by John Mason, Sep 04 2024
More terms from John Mason, Sep 18 2024

A066281 Number of 3-dimensional polyominoes (or polycubes) with n cells and rotational symmetry group of order exactly 4.

Original entry on oeis.org

0, 0, 0, 0, 0, 3, 5, 11, 11, 24, 35, 84, 92, 174, 254, 606, 658, 1255, 1769, 4353, 4667, 9131
Offset: 1

Views

Author

Brendan Owen (brendan_owen(AT)yahoo.com), Jan 01 2002

Keywords

Comments

The sequence counts "one-sided" polycubes (A000162); chiral polycubes count twice. - John Mason, Sep 18 2024

References

  • W. F. Lunnon, Symmetry of cubical and general polyominoes, pp. 101-108 of R. C. Read, editor, Graph Theory and Computing. Academic Press, NY, 1972.

Crossrefs

Formula

a(n) = 2*A(n)+2*BB(n)+2*BC(n)+AE(n)+BFF(n)+CJ(n)+EEE(n)+EF(n)+EFF(n), see Lunnon paper for naming convention. - John Mason, Sep 18 2024

Extensions

Name clarified and more terms from John Mason, Sep 18 2024

A066283 Number of 3-dimensional polyominoes (or polycubes) with n cells and rotational symmetry group of order exactly 6.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 0, 5, 2, 4, 3, 8, 4, 28, 14, 20, 20, 41
Offset: 1

Views

Author

Brendan Owen (brendan_owen(AT)yahoo.com), Jan 01 2002

Keywords

Comments

The sequence counts "one-sided" polycubes (A000162); chiral polycubes count twice. - John Mason, Sep 18 2024

References

  • W. F. Lunnon, Symmetry of cubical and general polyominoes, pp. 101-108 of R. C. Read, editor, Graph Theory and Computing. Academic Press, NY, 1972.

Crossrefs

Formula

a(n) = 2*CD(n)+CF(n), see Lunnon paper for naming convention. - John Mason, Sep 18 2024

Extensions

Name clarified and more terms from John Mason, Sep 18 2024

A066287 Number of 3-dimensional polyominoes (or polycubes) with n cells and rotational symmetry group of order exactly 8.

Original entry on oeis.org

0, 1, 1, 2, 2, 1, 1, 2, 4, 2, 5, 7, 8, 5, 10, 17, 20, 12, 23, 42, 48, 30, 59, 108
Offset: 1

Views

Author

Brendan Owen (brendan_owen(AT)yahoo.com), Jan 01 2002

Keywords

Comments

The entry a(14)=2 does not match the examples in A000162, which propose a(14)=5. - R. J. Mathar, Sep 03 2024
The sequence counts "one-sided" polycubes (A000162); chiral polycubes count twice. - John Mason, Sep 04 2024

References

  • W. F. Lunnon, Symmetry of cubical and general polyominoes, pp. 101-108 of R. C. Read, editor, Graph Theory and Computing. Academic Press, NY, 1972.

Crossrefs

Formula

a(n) = 2*AB(n)+BBC(n), see Lunnon paper for naming convention. - John Mason, Sep 04 2024

Extensions

a(14) corrected (after comment from R. J. Mathar), a(15)-a(24) added, and name clarified by John Mason, Sep 04 2024

A066453 Number of 3-dimensional polyominoes (or polycubes) with n cells and trivial rotational symmetry group.

Original entry on oeis.org

0, 0, 0, 1, 17, 127, 941, 6662, 47771, 344708, 2518713, 18585455, 138434899, 1039401564, 7859310749, 59794417068, 457408090798, 3516003907738, 27144132395911, 210375321159360, 1636229683680890, 12766881894462441
Offset: 1

Views

Author

Brendan Owen (brendan_owen(AT)yahoo.com), Dec 27 2001

Keywords

Comments

The sequence counts "one-sided" polycubes (A000162); chiral polycubes count twice. - John Mason, Sep 19 2024

References

  • W. F. Lunnon, Symmetry of cubical and general polyominoes, pp. 101-108 of R. C. Read, editor, Graph Theory and Computing. Academic Press, NY, 1972.

Crossrefs

Formula

a(n) = 2*I(n)+E(n)+F(n)+K(n), see Lunnon paper for naming convention. - John Mason, Sep 19 2024

Extensions

Name clarified by and more terms from John Mason, Sep 19 2024

A377155 Number of 3-dimensional polyominoes (or polycubes) with n cells and rotational symmetry group of order exactly 12.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 2, 1, 1, 3, 4, 0, 8, 4, 3, 8, 3, 2, 17, 6, 8, 19, 27, 2, 53, 19, 26, 49, 19, 10, 127, 38, 64, 121, 166, 15, 373, 111, 197, 306, 150, 67, 923, 242, 460, 771, 1100, 115, 2665, 686, 1405, 1972, 1085, 431, 6681, 1562, 3335, 5051, 7353
Offset: 1

Views

Author

John Mason, Oct 18 2024

Keywords

Comments

The sequence counts "one-sided" polycubes (A000162); chiral polycubes count twice.

Crossrefs

Formula

a(n) = 2*BD(n)+CCC(n)+DEE(n) = 2*A377128(n)+A377129(n)+A377130(n); see Lunnon paper for naming convention.
Showing 1-8 of 8 results.