A066457 Numbers k such that product of factorials of digits of k equals pi(k) (A000720).
13, 1512, 1520, 1521, 12016, 12035, 226130351, 209210612202, 209210612212, 209210612220, 209210612221, 13030323000581525
Offset: 1
Examples
12016 is a term because there are exactly 1!*2!*0!*1!*6! (or 1440) prime numbers less than or equal to 12016. pi(209210612202) = 8360755200 = 2!*0!*9!*2!*1!*0!*6!*1!*2!*2!*0!*2!. [Qu,Shun Liang (medie2006(AT)126.com), Nov 23 2008]
Links
- C. Caldwell and G. L. Honaker, Jr., Is pi(6521)=6!+5!+2!+1! unique?
- A discussion about this topic: bbs.emath.ac.cn [From Qu,Shun Liang (medie2006(AT)126.com), Nov 23 2008]
- Shyam Sunder Gupta, Fascinating Factorials, Exploring the Beauty of Fascinating Numbers, Springer (2025) Ch. 16, 411-442.
Programs
-
Mathematica
Select[Range[1000000], Times@@( # !&/@IntegerDigits[ # ])==PrimePi[ # ]&]
-
PARI
isok(n) = my(d = digits(n)); prod(k=1, #d, d[k]!) == primepi(n); \\ Michel Marcus, May 04 2018
Extensions
a(7) from Farideh Firoozbakht, Apr 20 2005
a(8)-a(11) from Qu,Shun Liang (medie2006(AT)126.com), Nov 23 2008
a(12) from Chai Wah Wu, May 03 2018
Comments