cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066466 Numbers having just one anti-divisor.

Original entry on oeis.org

3, 4, 6, 96, 393216
Offset: 1

Views

Author

Robert G. Wilson v, Jan 02 2002

Keywords

Comments

See A066272 for definition of anti-divisor.
Jon Perry calls these anti-primes.
A066272(a(n)) = 1.
From Max Alekseyev, Jul 23 2007; updated Jun 25 2025: (Start)
Except for a(2) = 4, the terms of A066466 have form 2^k*p where p is odd prime and both 2^(k+1)*p-1, 2^(k+1)*p+1 are prime (i.e., twin primes). In other words, this sequence, omitting 4, is a subsequence of A040040 containing elements of the form 2^k*p with prime p.
Furthermore, since 2^(k+1)*p-1, 2^(k+1)*p+1 must equal -1 and +1 modulo 3, the number 2^(k+1)*p must be 0 modulo 3, implying that p=3. Therefore every term, except 4, must be of the form 3*2^k such that 3*2^(k+1)-1, 3*2^(k+1)+1 are twin primes. In other words, k+1 belongs to the intersection of A002253 and A002235.
According to Ballinger and Keller's lists, there are no other such k up to 22*10^6. Therefore a(6) (if it exists) is greater than 3*2^(22*10^6) ~= 10^6622660. (End)
From Daniel Forgues, Nov 23 2009: (Start)
The 2 last known anti-primes seem to relate to the Fermat primes (coincidence?):
96 = 3 * 2^5 = 3 * 2^F_1 = 3 * 2^[2^(2^1) + 1] and
393216 = 3 * 2^17 = 3 * 2^F_2 = 3 * 2^[2^(2^2) + 1],
where F_k is the k-th Fermat prime. (End)

Crossrefs

Programs

  • Mathematica
    antid[n_] := Select[ Union[ Join[ Select[ Divisors[2n - 1], OddQ[ # ] && # != 1 & ], Select[ Divisors[2n + 1], OddQ[ # ] && # != 1 & ], 2n/Select[ Divisors[ 2n], OddQ[ # ] && # != 1 &]]], # < n & ]; Select[ Range[10^5], Length[ antid[ # ]] == 1 & ]

Extensions

Edited by Max Alekseyev, Oct 13 2009