A092679
Numbers k such that 3*2^k has only one anti-divisor.
Original entry on oeis.org
-
A092679 = [i for i,n in enumerate(map(lambda x:3*2**x,range(20))) if len([d for d in range(2,n,2) if n%d and not 2*n%d]+[d for d in range(3,n,2) if n%d and 2*n%d in [d-1,1]])==1] # Chai Wah Wu, Aug 09 2014
A092680
Numbers of the form 3*2^k with a single anti-divisor.
Original entry on oeis.org
3, 6, 96, 393216
Offset: 1
-
from itertools import count, islice
from sympy.ntheory.factor_ import antidivisor_count
def A092680_gen(): return filter(lambda n: antidivisor_count(n)==1,(3*2**k for k in count(0)))
A092680_list = list(islice(A092680_gen(),4)) # Chai Wah Wu, Jan 04 2022
A203616
Numbers k such that the reversal of sigma*(k) equals the sum of the reversals of the anti-divisors of k, where sigma*(k) is the sum of the anti-divisors of k.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 8, 9, 20, 63, 96, 97, 317, 596, 1473, 3934, 26777, 27684, 50867, 51767, 62417, 322001, 393216, 1308775, 1420260, 1851474, 2651867, 2659067, 3040656, 3227267, 3289277, 3376007, 4626917, 4639067, 5378507, 6054521, 6227027, 6239839, 6439067, 6581929
Offset: 1
n=317. Anti-divisors: 2, 3, 5, 127, 211.
Sum of the reversals of the anti-divisors: 2+3+5+721+112=843.
Sigma*(317)=348 and its reversal is 843.
n=1473. Anti-divisors: 2, 5, 6, 7, 19, 31, 95, 155, 421, 589, 982.
Sum of the reversals of the anti-divisors:
2+5+6+7+91+13+59+551+124+985+289=2132.
Sigma*(1473)=2312 and its reversal is 2132.
-
isA203616:=proc(j) local a,b,c; a:=0; b:=0;
for c from 2 to j-1 do
if abs((j mod c)-c/2)<1 then a:=a+A004086(c); b:=b+c; fi;
od;
evalb(A004086(b)=a) end: # simplified by M. F. Hasler, Jan 29 2012
for n to 10^7 do if isA203616(n) then lprint(n) fi od: # simplified by M. F. Hasler, Jan 29 2012
-
from itertools import count, islice
from sympy.ntheory.factor_ import antidivisors
def a203616():
isa = lambda n: str(sum((a:=antidivisors(n))))[::-1]==str(sum(map(int, (str()[::-1] for in a))))
yield from (n for n in count(1) if isa(n))
a203616_list = [*islice(a203616(), 20)] # Dumitru Damian, Feb 12 2024
Original entry on oeis.org
3, 18, 1728, 679477248
Offset: 1
a(1) = 3.
a(2) = 3 * 6 = 18.
a(3) = 3 * 6 * 96 = 1728.
a(4) = 3 * 6 * 96 * 393216 = 679477248.
A263940
Numbers such that the product of the sum of their anti-divisors and the sum of the reciprocals of their anti-divisors is an integer.
Original entry on oeis.org
3, 4, 6, 37, 96, 937, 2760, 393216
Offset: 1
Anti-divisors of 937 are 2, 3, 5, 15, 25, 75, 125, 375 and 625. Their sum is 1250 while the sum of their reciprocals is 1/2 + 1/3 + 1/5 + 1/15 + 1/25 + 1/75 + 1/125 + 1/375 + 1/625 = 1457/1250. Finally 1250 * 1457/1250 = 1457.
-
with(numtheory); P:=proc(q) local a,b,k,n;
for n from 3 to q do a:=0; b:=0;
for k from 2 to n-1 do if abs((n mod k)-k/2)<1 then a:=a+k; b:=b+1/k;
fi; od; if type(a*b,integer) then print(n); fi; od; end: P(10^4);
-
f[n_] := Cases[Range[2, n - 1], ?(Abs[Mod[n, #] - #/2] < 1 &)]; Select[Range[3, 3000], IntegerQ@ Times[Total@ f@ #, Total[1/f@ #]] &] (* _Michael De Vlieger, Nov 11 2015 *)
Showing 1-5 of 5 results.
Comments