cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066484 Numbers with at least 2 distinct digits and whose "rotations" (including the number itself) are multiples of these digits; repeated digits allowed but digit 0 not allowed.

Original entry on oeis.org

1113, 1131, 1311, 2226, 2262, 2622, 3111, 3339, 3393, 3933, 6222, 9333, 11133, 11313, 11331, 13113, 13131, 13311, 22266, 22626, 22662, 26226, 26262, 26622, 31113, 31131, 31311, 33111, 33399, 33939, 33993, 39339, 39393, 39933, 62226, 62262, 62622, 66222, 93339, 93393, 93933, 99333, 111333, 111339, 111393
Offset: 1

Views

Author

Sudipta Das (juitech(AT)vsnl.net), Jan 02 2002

Keywords

Comments

"Rotation" of a (multi-digit) number involves taking the first digit of the number and putting it at the end to form a new number. For example, successive rotations of 1234 yield the numbers 2341, 3412 and 4123 (another rotation gives back the original number).
Subsequence of A034838, A052382 and of A139819. - Reinhard Zumkeller, Nov 29 2012

Examples

			The rotations of 137179 are 371791, 717913, 179137, 791371, 913717, 137179; all these are divisible by 1, 3, 7 and 9.
		

Programs

  • Haskell
    -- import Data.List (nub, inits, tails)
    a066484 n = a066484_list !! (n-1)
    a066484_list = filter h [1..] where
       h x = notElem '0' xs && length (nub xs) > 1 &&
             all d (map read $ zipWith (++)
                   (tail $ tails xs) (tail $ inits xs)) where xs = show x
       d u = g u where
             g v = v == 0 || mod u d == 0 && g v' where (v', d) = divMod v 10
    -- Reinhard Zumkeller, Nov 29 2012
    
  • Mathematica
    ddQ[n_]:=Module[{idn=IntegerDigits[n]},DigitCount[n,10,0]==0 && Length[Union[idn]]>1 && And@@Flatten[Divisible[#,Union[idn]]&/@ (FromDigits/@Table[RotateRight[idn,i], {i,Length[idn]}])]]; Select[Range[10,200000],ddQ]  (* Harvey P. Dale, Mar 30 2011 *)
  • PARI
    select( {is_A066484(n,d=Set(digits(n)))= d[1] && #d>1 && (d[1]>1||d=d[^1]) && !for(i=0,logint(n,10),n=[1,10^logint(n,10)]*divrem(n,10);[n%x|x<-d]&&return)}, [1..10^5]) \\ M. F. Hasler, Jan 05 2020

Extensions

Corrected and extended by Harvey P. Dale, Mar 30 2011
Definition reworded by M. F. Hasler, Jan 05 2020