A066484 Numbers with at least 2 distinct digits and whose "rotations" (including the number itself) are multiples of these digits; repeated digits allowed but digit 0 not allowed.
1113, 1131, 1311, 2226, 2262, 2622, 3111, 3339, 3393, 3933, 6222, 9333, 11133, 11313, 11331, 13113, 13131, 13311, 22266, 22626, 22662, 26226, 26262, 26622, 31113, 31131, 31311, 33111, 33399, 33939, 33993, 39339, 39393, 39933, 62226, 62262, 62622, 66222, 93339, 93393, 93933, 99333, 111333, 111339, 111393
Offset: 1
Examples
The rotations of 137179 are 371791, 717913, 179137, 791371, 913717, 137179; all these are divisible by 1, 3, 7 and 9.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..1000
- Ken Duisenberg, Puzzle of the Week (Dec 14, 2001), Dividing Rotated Numbers
Programs
-
Haskell
-- import Data.List (nub, inits, tails) a066484 n = a066484_list !! (n-1) a066484_list = filter h [1..] where h x = notElem '0' xs && length (nub xs) > 1 && all d (map read $ zipWith (++) (tail $ tails xs) (tail $ inits xs)) where xs = show x d u = g u where g v = v == 0 || mod u d == 0 && g v' where (v', d) = divMod v 10 -- Reinhard Zumkeller, Nov 29 2012
-
Mathematica
ddQ[n_]:=Module[{idn=IntegerDigits[n]},DigitCount[n,10,0]==0 && Length[Union[idn]]>1 && And@@Flatten[Divisible[#,Union[idn]]&/@ (FromDigits/@Table[RotateRight[idn,i], {i,Length[idn]}])]]; Select[Range[10,200000],ddQ] (* Harvey P. Dale, Mar 30 2011 *)
-
PARI
select( {is_A066484(n,d=Set(digits(n)))= d[1] && #d>1 && (d[1]>1||d=d[^1]) && !for(i=0,logint(n,10),n=[1,10^logint(n,10)]*divrem(n,10);[n%x|x<-d]&&return)}, [1..10^5]) \\ M. F. Hasler, Jan 05 2020
Extensions
Corrected and extended by Harvey P. Dale, Mar 30 2011
Definition reworded by M. F. Hasler, Jan 05 2020
Comments