A066488 Composite numbers k which divide A001045(k-1).
341, 1105, 1387, 1729, 2047, 2465, 2701, 2821, 3277, 4033, 4369, 4681, 5461, 6601, 7957, 8321, 8911, 10261, 10585, 11305, 13741, 13747, 13981, 14491, 15709, 15841, 16705, 18721, 19951, 23377, 29341, 30121, 30889, 31417, 31609, 31621, 34945
Offset: 1
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
Programs
-
Magma
[k:k in [4..40000]|not IsPrime(k) and ((2^(k-1) + (-1)^k) div 3) mod k eq 0]; // Marius A. Burtea, Dec 20 2019
-
Mathematica
a[0] = 0; a[1] = 1; a[n_] := a[n] = a[n - 1] + 2a[n - 2]; Select[ Range[50000], IntegerQ[a[ # - 1]/ # ] && !PrimeQ[ # ] && # != 1 & ] fQ[n_] := ! PrimeQ@ n && Mod[((2^n - 2)/3 + 1), n] == Mod[2^n - 1, n] == 1; Select[ Range@ 35000, fQ]
-
PARI
is(n)=n%3 && Mod(2,n)^(n-1)==1 && !isprime(n) && n>1 \\ Charles R Greathouse IV, Sep 18 2013
Comments