cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066488 Composite numbers k which divide A001045(k-1).

Original entry on oeis.org

341, 1105, 1387, 1729, 2047, 2465, 2701, 2821, 3277, 4033, 4369, 4681, 5461, 6601, 7957, 8321, 8911, 10261, 10585, 11305, 13741, 13747, 13981, 14491, 15709, 15841, 16705, 18721, 19951, 23377, 29341, 30121, 30889, 31417, 31609, 31621, 34945
Offset: 1

Views

Author

Robert G. Wilson v, Jan 03 2002

Keywords

Comments

Also composite numbers k such that (2^k - 2)/3 + 1 == 2^k - 1 == 1 (mod k).
An equivalent definition of this sequence: pseudoprimes to base 2 that are not divisible by 3. - Arkadiusz Wesolowski, Nov 15 2011
Conjecture: these are composites k such that 2^M(k-1) == -1 (mod M(k)^2 + M(k) + 1), where M(k) = 2^k - 1. - Amiram Eldar and Thomas Ordowski, Dec 19 2019
These are composites k such that 2^(m-1) == 1 (mod (m+1)^6 - 1), where m = 2^k - 1. - Thomas Ordowski, Sep 17 2023

Crossrefs

Programs

  • Magma
    [k:k in [4..40000]|not IsPrime(k) and ((2^(k-1) + (-1)^k) div 3) mod k eq 0]; // Marius A. Burtea, Dec 20 2019
  • Mathematica
    a[0] = 0; a[1] = 1; a[n_] := a[n] = a[n - 1] + 2a[n - 2]; Select[ Range[50000], IntegerQ[a[ # - 1]/ # ] && !PrimeQ[ # ] && # != 1 & ]
    fQ[n_] := ! PrimeQ@ n && Mod[((2^n - 2)/3 + 1), n] == Mod[2^n - 1, n] == 1; Select[ Range@ 35000, fQ]
  • PARI
    is(n)=n%3 && Mod(2,n)^(n-1)==1 && !isprime(n) && n>1 \\ Charles R Greathouse IV, Sep 18 2013