A066500 Numbers k such that 5 divides phi(k).
11, 22, 25, 31, 33, 41, 44, 50, 55, 61, 62, 66, 71, 75, 77, 82, 88, 93, 99, 100, 101, 110, 121, 122, 123, 124, 125, 131, 132, 142, 143, 150, 151, 154, 155, 164, 165, 175, 176, 181, 183, 186, 187, 191, 198, 200, 202, 205, 209, 211, 213, 217, 220, 225, 231, 241
Offset: 1
Keywords
Examples
x^5 == 1 (mod 11) has solutions 1 < x < 11, namely {3,4,5,9}.
Links
- Harry J. Smith, Table of n, a(n) for n = 1..1000
- Robert E. Dressler, A property of the phi and sigma_j functions, Compositio Mathematica, Vol. 31, No. 2 (1975), pp. 115-118.
Programs
-
Mathematica
Select[Range[250], Divisible[EulerPhi[#], 5] &] (* Amiram Eldar, May 23 2022 *)
-
PARI
isok(k) = { eulerphi(k)%5 == 0 } \\ Harry J. Smith, Feb 18 2010
Formula
Extensions
Simpler definition from Yuval Dekel (dekelyuval(AT)hotmail.com), Oct 25 2003
Extended by Ray Chandler, Nov 06 2003
Comments