cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A333175 If n = Product (p_j^k_j) then a(n) = Sum (a(n/p_j^k_j)), with a(1) = 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 6, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 6, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 6, 1, 2, 2, 1, 2, 6, 1, 2, 2, 6, 1, 2, 1, 2, 2, 2, 2, 6, 1, 2, 1, 2, 1, 6, 2, 2, 2, 2, 1, 6, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2
Offset: 1

Views

Author

Ilya Gutkovskiy, Mar 11 2020

Keywords

Comments

Number of ordered prime factorizations of radical of n.
Number of permutations of the prime indices of n (counting multiplicity) avoiding the patterns (1,2,1) and (2,1,2). These are permutations with all equal parts contiguous. Depends only on sorted prime signature (A118914). - Gus Wiseman, Jun 27 2020

Examples

			From _Gus Wiseman_, Jun 27 2020 (Start)
The a(n) permutations of prime indices for n = 2, 12, 60:
  (1)  (112)  (1123)
       (211)  (1132)
              (2113)
              (2311)
              (3112)
              (3211)
(End)
		

Crossrefs

Dominates A335451.
Permutations of prime indices are A008480.
Unsorted prime signature is A124010. Sorted prime signature is A118914.
(1,2,1)-avoiding permutations of prime indices are A335449.
(2,1,2)-avoiding permutations of prime indices are A335450.
(1,2,1) or (2,1,2)-matching permutations of prime indices are A335460.
(1,2,1) and (2,1,2)-matching permutations of prime indices are A335462.

Programs

  • Maple
    f:= n -> nops(numtheory:-factorset(n))!:
    map(f, [$1..100]); # Robert Israel, Mar 12 2020
  • Mathematica
    a[1] = 1; a[n_] := a[n] = Plus @@ (a[n/#[[1]]^#[[2]]] & /@ FactorInteger[n]); Table[a[n], {n, 1, 100}]
    a[1] = 1; a[n_] := a[n] = Sum[If[GCD[n/d, d] == 1 && d < n, Boole[PrimePowerQ[n/d]] a[d], 0], {d, Divisors[n]}]; Table[a[n], {n, 1, 100}]
    Table[PrimeNu[n]!, {n, 1, 100}]

Formula

a(1) = 1; a(n) = Sum_{d|n, d < n, gcd(d, n/d) = 1} A069513(n/d) * a(d).
a(n) = A000142(A001221(n)).

A306363 For n > 1 having omega(n) = k and canonical prime factorization n = d_1*d_2*...*d_k, a(n) = Sum_{i=1..k} (d_i*a(n/d_i) + (n/d_i)); a(1)=0.

Original entry on oeis.org

0, 1, 1, 1, 1, 10, 1, 1, 1, 14, 1, 14, 1, 18, 16, 1, 1, 22, 1, 18, 20, 26, 1, 22, 1, 30, 1, 22, 1, 155, 1, 1, 28, 38, 24, 26, 1, 42, 32, 26, 1, 205, 1, 30, 28, 50, 1, 38, 1, 54, 40, 34, 1, 58, 32, 30, 44, 62, 1, 235, 1, 66, 32, 1, 36, 305, 1, 42, 52, 295, 1, 34, 1, 78
Offset: 1

Views

Author

David James Sycamore, Feb 10 2019

Keywords

Comments

Recursion similar to that of A006022. k=1 => a(n)=1; k=2 => a(n) = 2*(d_1 + d_2); claim: a(n)=A000522(k-1)*A066504(n); k = omega(n). Inductive proof on k (sketch): Let A=A000522 and B=A066504 = Sum_{i=1..k} (n/d_i). True for k=1,2 so assume true for arbitrary k. Then for n with omega(n)=k+1, a(n) = (Sum_{i=1..k+1} d_i*(n/d_i)) + B(n) = A(k-1)*k*B(n) + B(n) = ((A(k-1)*k) + 1)*B(n). But (A(k-1)k)+1) = A(k) by recursive formula for A000522, so a(n) = A(k)*B(n); hence true for k+1.

Examples

			n=6 = 2*3, a(n) = 2*a(3) + 3*a(2) + 3 + 2 = 2*(2+3) = 10.
n=210=2*3*5*7; k=4, a(n)=A000522(3)*(2*3*5 + 2*3*7 + 2*5*7 + 3*5*7) = 16*247 = 3952.
		

Crossrefs

Programs

  • PARI
    a(n) = if (n==1, 0, my(f=factor(n)); sum(k=1, #f~, my(dk=f[k,1]^f[k,2]); dk*a(n/dk) + (n/dk))); \\ Michel Marcus, Feb 19 2019

Formula

a(n) = A000522(k-1)*A066504(n); k = omega(n) = A001221(n).

A304404 If n = Product (p_j^k_j) then a(n) = Product (n/p_j^k_j).

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 10, 1, 12, 1, 14, 15, 1, 1, 18, 1, 20, 21, 22, 1, 24, 1, 26, 1, 28, 1, 900, 1, 1, 33, 34, 35, 36, 1, 38, 39, 40, 1, 1764, 1, 44, 45, 46, 1, 48, 1, 50, 51, 52, 1, 54, 55, 56, 57, 58, 1, 3600, 1, 62, 63, 1, 65, 4356, 1, 68, 69, 4900, 1, 72, 1, 74, 75
Offset: 1

Views

Author

Ilya Gutkovskiy, May 12 2018

Keywords

Examples

			a(60) = a(2^2*3*5) = (60/2^2) * (60/3) * (60/5) = 15 * 20 * 12 = 3600.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Times @@ (n/#[[1]]^#[[2]] & /@ FactorInteger[n]); Table[a[n], {n, 75}]
    Table[n^(PrimeNu[n] - 1), {n, 75}]
  • PARI
    A304404(n) = (n^(omega(n)-1)); \\ Antti Karttunen, Aug 06 2018
    
  • Python
    from sympy.ntheory.factor_ import primenu
    def A304404(n): return int(n**(primenu(n)-1)) # Chai Wah Wu, Jul 12 2023

Formula

a(n) = n^(omega(n)-1), where omega() = A001221.
a(n) = A062509(n)/n.
Showing 1-3 of 3 results.