A066527 Triangular numbers that for some k are also the sum of the first k primes.
10, 28, 133386, 4218060, 54047322253, 14756071005948636, 600605016143706003, 41181981873797476176, 240580227206205322973571, 1350027226921161196478736
Offset: 1
Examples
a(2) = 28, as A000217(7) = 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28 = 2 + 3 + 5 + 7 + 11 = A007504(5).
Crossrefs
Programs
-
Haskell
a066527 n = a066527_list !! (n-1) a066527_list = filter ((== 1) . a010054) a007504_list -- Reinhard Zumkeller, Mar 23 2013
-
Maple
a066527(m) = local(d,ds,p,ps); d=1; ds=1; p=2; ps=2; while(ds
-
Mathematica
s = 0; Do[s = s + Prime[n]; t = Floor[ Sqrt[2*s]]; If[t*(t + 1) == 2s, Print[s]], {n, 1, 10^6} ] Select[Accumulate[Prime[Range[5000000]]],IntegerQ[(Sqrt[1+8#]-1)/2]&] (* Harvey P. Dale, May 04 2013 *)
-
Python
from sympy import integer_nthroot, isprime, nextprime def istri(n): return integer_nthroot(8*n+1, 2)[1] def afind(limit): s, p = 2, 2 while s < limit: if istri(s): print(s, end=", ") p = nextprime(p) s += p afind(10**11) # Michael S. Branicky, Oct 28 2021
Extensions
a(5) from Klaus Brockhaus and Robert G. Wilson v, Jan 07 2002
a(6) from Philip Sung (philip_sung(AT)hotmail.com), Jan 25 2002
a(7)-a(8) from Donovan Johnson, Nov 24 2008
a(9)-a(10) from Donovan Johnson, Aug 23 2010
Comments