A066540 The first of two consecutive primes with equal digital sums.
523, 1069, 1259, 1759, 1913, 2503, 3803, 4159, 4373, 4423, 4463, 4603, 4703, 4733, 5059, 5209, 6229, 6529, 6619, 7159, 7433, 7459, 8191, 9109, 9749, 9949, 10691, 10753, 12619, 12763, 12923, 13763, 14033, 14107, 14303, 14369, 15859, 15973, 16529, 16673, 16903, 17239
Offset: 1
Examples
a(1) = 523 because both it and the next prime, 541, have a digital sum of 10.
Links
- Harry J. Smith, Table of n, a(n) for n = 1..1000
- G. L. Honaker, Jr. and C. Caldwell, Prime Curios!
Programs
-
Mathematica
Prime[ Select[Range[2000], Apply[ Plus, IntegerDigits[ Prime[ # ]]] == Apply[ Plus, IntegerDigits[ Prime[ # + 1]]] & ]] Prime[#]&/@(SequencePosition[Total[IntegerDigits[#]]&/@Prime[Range[2000]],{x_,x_}][[;;,1]]) (* Harvey P. Dale, Mar 27 2025 *)
-
PARI
upto(limit)={my(d=2, L=List()); forprime(p=3, nextprime(limit+1), my(s=sumdigits(p)); if(s==d, listput(L, precprime(p-1))); d=s); Vec(L) } \\ Harry J. Smith, Feb 22 2010
-
PARI
is_A066540(p)={my(n=nextprime(p+1)); (n-p)%18==0 & isprime(p) & A007953(p)==A007953(n)} \\ M. F. Hasler, Oct 13 2012
-
Python
from sympy import nextprime from itertools import islice def agen(): # generator of terms p, hp, q, hq = 2, 2, 3, 3 while True: if hp == hq: yield p p, q = q, nextprime(q) hp, hq = hq, sum(map(int, str(q))) print(list(islice(agen(), 42))) # Michael S. Branicky, Feb 19 2024
Comments