A066570 Product of numbers <= n that have a prime factor in common with n.
1, 2, 3, 8, 5, 144, 7, 384, 162, 19200, 11, 1244160, 13, 4515840, 1458000, 10321920, 17, 75246796800, 19, 278691840000, 1080203040, 899245670400, 23, 16686729658368000, 375000, 663152807116800, 7142567040, 209964381084057600, 29, 1229978843118305280000000
Offset: 1
Examples
a(7) = 7, a(9) = 3*6*9 = 162.
Links
- T. D. Noe, Table of n, a(n) for n = 1..200
Programs
-
Maple
A066570 := proc(n) local i; mul(i,i=remove(k->igcd(n,k)=1,[$1..n])) end: # Peter Luschny, Oct 11 2011
-
Mathematica
Table[Times @@ Select[Range[2, n], GCD[#, n] > 1 &], {n, 30}] (* T. D. Noe, Oct 04 2012 *)
-
PARI
a(n) = prod(k=1, n, if (gcd(k, n) != 1, k, 1)); \\ Michel Marcus, Nov 02 2017
-
Sage
def Gauss_factorial(N, n): return mul(j for j in (1..N) if gcd(j, n) == 1) def A066570(n): return Gauss_factorial(n, 1)/Gauss_factorial(n, n) [A066570(n) for n in (1..30)] # Peter Luschny, Oct 02 2012
Formula
a(n) = n!/A001783(n).
a(n) = Gauss_factorial(n, 1)/Gauss_factorial(n, n) (see A216919). - Peter Luschny, Oct 02 2012
Comments