cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066570 Product of numbers <= n that have a prime factor in common with n.

Original entry on oeis.org

1, 2, 3, 8, 5, 144, 7, 384, 162, 19200, 11, 1244160, 13, 4515840, 1458000, 10321920, 17, 75246796800, 19, 278691840000, 1080203040, 899245670400, 23, 16686729658368000, 375000, 663152807116800, 7142567040, 209964381084057600, 29, 1229978843118305280000000
Offset: 1

Views

Author

Amarnath Murthy, Dec 19 2001

Keywords

Comments

Empty product, 1, for n = 1.
a(p) = p if p is a prime.

Examples

			a(7) = 7, a(9) = 3*6*9 = 162.
		

Crossrefs

Programs

  • Maple
    A066570 := proc(n) local i; mul(i,i=remove(k->igcd(n,k)=1,[$1..n])) end: # Peter Luschny, Oct 11 2011
  • Mathematica
    Table[Times @@ Select[Range[2, n], GCD[#, n] > 1 &], {n, 30}] (* T. D. Noe, Oct 04 2012 *)
  • PARI
    a(n) = prod(k=1, n, if (gcd(k, n) != 1, k, 1)); \\ Michel Marcus, Nov 02 2017
  • Sage
    def Gauss_factorial(N, n): return mul(j for j in (1..N) if gcd(j, n) == 1)
    def A066570(n): return Gauss_factorial(n, 1)/Gauss_factorial(n, n)
    [A066570(n) for n in (1..30)] # Peter Luschny, Oct 02 2012
    

Formula

a(n) = n!/A001783(n).
a(n) = Gauss_factorial(n, 1)/Gauss_factorial(n, n) (see A216919). - Peter Luschny, Oct 02 2012