A066624 Number of 1's in binary expansion of parts in all partitions of n.
0, 1, 3, 7, 13, 23, 41, 65, 102, 156, 234, 340, 495, 697, 982, 1359, 1864, 2523, 3408, 4536, 6022, 7918, 10365, 13457, 17423, 22380, 28666, 36498, 46318, 58466, 73617, 92221, 115236, 143402, 177984, 220086, 271524, 333810, 409490, 500804, 611149, 743728, 903296
Offset: 0
Examples
For n = 3: 11 = 10+1 = 1+1+1 [binary expansion of partitions of 3]. a(3) = (two 1's) + (two 1's) + (three 1's), so a(3) = 7.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..8000
Programs
-
Mathematica
<< DiscreteMath`Combinatorica`; Table[Count[Flatten[IntegerDigits[Partitions[n], 2]], 1], {n, 0, 50}] Table[Total[Flatten[IntegerDigits[#,2]&/@IntegerPartitions[n]]],{n,0,50}] (* Harvey P. Dale, Mar 29 2022 *)
Extensions
More terms from Vladeta Jovovic and Robert G. Wilson v, Jan 11 2002