cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066656 a(n) = A000031(n) - A001037(n).

Original entry on oeis.org

0, 0, 2, 2, 3, 2, 5, 2, 6, 4, 9, 2, 17, 2, 21, 10, 36, 2, 70, 2, 111, 22, 189, 2, 382, 8, 633, 60, 1185, 2, 2301, 2, 4116, 190, 7713, 26, 14940, 2, 27597, 634, 52518, 2, 101051, 2, 190749, 2248, 364725, 2, 703332, 20, 1342284, 7714, 2581431, 2, 4985610, 194
Offset: 0

Views

Author

Randall L Rathbun, Jan 10 2002

Keywords

Comments

This is the number of imprimitive (periodic) n-bead necklaces with 2 colors when turning over is not allowed. a(p)=2 for prime p. Presumably, a(n)=2*A115118(n) for odd n. - Valery A. Liskovets, Jan 17 2006

Crossrefs

Programs

  • Mathematica
    mx=40; f[x_]:=Sum[(MoebiusMu[i]-EulerPhi[i])Log[1-2*x^i]/i,{i,1,mx}];
    CoefficientList[Series[f[x],{x,0,mx}],x] (* Herbert Kociemba, Nov 25 2016 *)
  • PARI
    a(n) = if (n==0, 0, sumdiv(n, d, (eulerphi(d)*2^(n/d) - moebius(n/d)*2^d))/n); \\ Michel Marcus, May 25 2022

Formula

a(0) = 0; a(n) = (1/n)*Sum_{d|n} (phi(d)*2^(n/d) - mu(n/d)*2^d). [corrected by Michel Marcus, May 25 2022]
G.f.: Sum_{i>=1} (mu(i) - phi(i))*log(1 - 2*x^i)/i. - Herbert Kociemba, Nov 25 2016