cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A115118 Number of imprimitive (periodic) n-bead binary necklaces with beads of 2 colors where the colors may be swapped but turning over is not allowed.

Original entry on oeis.org

0, 0, 1, 1, 2, 1, 3, 1, 4, 2, 5, 1, 10, 1, 11, 5, 20, 1, 36, 1, 58, 11, 95, 1, 196, 4, 317, 30, 598, 1, 1153, 1, 2068, 95, 3857, 13, 7488, 1, 13799, 317, 26288, 1, 50531, 1, 95422, 1124, 182363, 1, 351764, 10, 671144, 3857, 1290874, 1, 2492820, 97, 4794104, 13799, 9256397, 1, 17923218, 1, 34636835, 49968, 67110932, 319
Offset: 0

Views

Author

Valery A. Liskovets, Jan 17 2006

Keywords

Comments

a(p) = 1 for prime p. Presumably a(n) = A115121(n) = A066656(n)/2 for odd n.

Crossrefs

Programs

  • Mathematica
    a[n_] := If[n == 0, 0, Sum[EulerPhi[2d] 2^(n/d) - Boole[OddQ[d]] MoebiusMu[d] 2^(n/d), {d, Divisors[n]}]/(2n)];
    Array[a, 66, 0] (* Jean-François Alcover, Aug 29 2019 *)
  • PARI
    a(n) = if (n==0, 0, (sumdiv(n, d, eulerphi(2*d) * 2^(n/d)) - sumdiv(n, d, (d%2)*(moebius(d)*2^(n/d))))/(2*n)); \\ Michel Marcus, Oct 21 2017

Formula

a(n) = A000013(n) - A000048(n).
a(n) = Sum_{k=2..n} A385665(n,k). - Tilman Piesk, Aug 03 2025

Extensions

More terms from Antti Karttunen, Oct 21 2017

A164896 Number of subsets (up to cyclic shifts) of the n-th roots of 1 with zero sum.

Original entry on oeis.org

1, 2, 2, 3, 2, 5, 2, 6, 4, 9, 2, 19, 2, 21, 10, 36, 2, 94, 2, 117, 22, 189, 2, 618, 8, 633, 60, 1203, 2, 6069, 2, 4116, 190, 7713, 26, 35324, 2, 27597, 634, 59706, 2, 328835, 2, 190935, 2728, 364725, 2, 2435780, 20, 1579884, 7714, 2582061, 2, 21013770, 194, 9894294, 27598, 18512793, 2, 377367015, 2, 69273669, 104832, 134219796, 638, 1678410951
Offset: 1

Views

Author

Joerg Arndt, Aug 30 2009

Keywords

Comments

Cyclic shifts correspond to multiplication by a root of unity.
a(n)=2 for n prime, corresponding to the empty and the full subset. - Joerg Arndt, Jun 10 2011

Examples

			a(6) = 5 because these subsets add to zero: (left: as bitstring, right: subset)
  ......  (empty sum)
  ..1..1  0 3
  .1.1.1  0 2 4
  .11.11  0 1 3 4
  111111  0 1 2 3 4 5 (all roots of unity)
		

Crossrefs

Cf. A066656, A103314, A110981 (counts subsets with bitstrings being Lyndon words).

Formula

a(n) = A110981(n) + Sum_{d|n,dA001037(d) = A110981(n) + A000031(n) - A001037(n). - Max Alekseyev, Apr 08 2013
a(n) = A110981(n) + A066656(n). - Andrew Howroyd, Mar 22 2023

Extensions

a(32)-a(39) from Joerg Arndt, Jun 10 2011
Terms a(40) onward from Max Alekseyev, Apr 08 2013

A115121 Number of imprimitive (periodic) bracelets (or necklaces) with n red or blue beads such that the beads switch colors when bracelet is turned over.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 4, 2, 5, 1, 11, 1, 11, 5, 22, 1, 37, 1, 64, 11, 95, 1, 210, 4, 317, 30, 625, 1, 1160, 1, 2122, 95, 3857, 13, 7612, 1, 13799, 317, 26518, 1, 50559, 1, 95887, 1124, 182363, 1, 352750, 10, 671150, 3857, 1292764, 1, 2492933, 97, 4797904, 13799
Offset: 1

Views

Author

Valery A. Liskovets, Jan 17 2006

Keywords

Comments

a(p)=1 for prime p.
Presumably a(n) = A115118(n) = A066656(n)/2 for odd n.

Programs

Formula

a(n) = A053656(n) - A066313(n).

Extensions

More terms from Jean-François Alcover, Aug 28 2019

A278663 Number of periodic necklaces with n beads of 3 colors.

Original entry on oeis.org

0, 0, 3, 3, 6, 3, 14, 3, 24, 11, 54, 3, 148, 3, 318, 59, 834, 3, 2314, 3, 5952, 323, 16110, 3, 45178, 51, 122646, 2195, 341820, 3, 962634, 3, 2690844, 16115, 7596486, 363, 21568780, 3, 61171662, 122651, 174343026, 3, 498453878, 3, 1426419876, 958819, 4093181694, 3, 11770610128, 315, 33891550302
Offset: 0

Views

Author

Herbert Kociemba, Nov 25 2016

Keywords

Examples

			Example: The 6 periodic necklaces with 4 beads and the colors A, B and C are AAAA, BBBB, CCCC, ABAB, ACAC and BCBC.
		

Crossrefs

Cf. A001867, A027376, A066656 (2 colors).

Programs

  • Mathematica
    mx=40;f[x_,k_]:=Sum[(MoebiusMu[i]-EulerPhi[i])Log[1-k*x^i]/i,{i,1,mx}];CoefficientList[Series[f[x,3],{x,0,mx}],x]

Formula

G.f.: k=3, Sum_{i>=1} (mu(i) - phi(i))*log(1 - k*x^i)/i.
a(n) = A001867(n) - A027376(n). - Alois P. Heinz, Nov 25 2016
Showing 1-4 of 4 results.