cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A115118 Number of imprimitive (periodic) n-bead binary necklaces with beads of 2 colors where the colors may be swapped but turning over is not allowed.

Original entry on oeis.org

0, 0, 1, 1, 2, 1, 3, 1, 4, 2, 5, 1, 10, 1, 11, 5, 20, 1, 36, 1, 58, 11, 95, 1, 196, 4, 317, 30, 598, 1, 1153, 1, 2068, 95, 3857, 13, 7488, 1, 13799, 317, 26288, 1, 50531, 1, 95422, 1124, 182363, 1, 351764, 10, 671144, 3857, 1290874, 1, 2492820, 97, 4794104, 13799, 9256397, 1, 17923218, 1, 34636835, 49968, 67110932, 319
Offset: 0

Views

Author

Valery A. Liskovets, Jan 17 2006

Keywords

Comments

a(p) = 1 for prime p. Presumably a(n) = A115121(n) = A066656(n)/2 for odd n.

Crossrefs

Programs

  • Mathematica
    a[n_] := If[n == 0, 0, Sum[EulerPhi[2d] 2^(n/d) - Boole[OddQ[d]] MoebiusMu[d] 2^(n/d), {d, Divisors[n]}]/(2n)];
    Array[a, 66, 0] (* Jean-François Alcover, Aug 29 2019 *)
  • PARI
    a(n) = if (n==0, 0, (sumdiv(n, d, eulerphi(2*d) * 2^(n/d)) - sumdiv(n, d, (d%2)*(moebius(d)*2^(n/d))))/(2*n)); \\ Michel Marcus, Oct 21 2017

Formula

a(n) = A000013(n) - A000048(n).
a(n) = Sum_{k=2..n} A385665(n,k). - Tilman Piesk, Aug 03 2025

Extensions

More terms from Antti Karttunen, Oct 21 2017

A308684 Partition array T(n, k) for the coefficients of the n-th power sums of the second elementary symmetric function in terms of the elementary symmetric functions.

Original entry on oeis.org

1, 2, -2, 1, 3, -3, -3, 3, 3, -3, 1, 4, -4, -4, -4, 6, 4, 8, -8, -4, 4, -4, 4, 2, -4, 1, 5, -5, -5, -5, -5, 10, 5, 10, 10, -15, 5, -15, 5, 5, -5, -15, 10, 5, 10, -5, -5, -5, 5, 5, 5, -5, 5, 5, -5, 1
Offset: 1

Views

Author

Wolfdieter Lang, Jul 08 2019

Keywords

Comments

The length of row n is A209816(n) (number of partitions of 2*n with at most n parts).
This is a generalization of the Girard-Waring array A115131.
In A324254 the general definition psigma(n, r) has been given for the r-th power sum of the n-th elementary symmetric function. There it is given in terms of the ordinary power sums {ps(j*r)}_{j=1..n}. Here psigma(2, n) = (1/2)*(-ps(2*n) + (ps(n))^2) is considered (see row n = 2 in A324254), and it is written in terms of elementary symmetric functions e_k(x1, x2, ...x_N), using the Girard-Waring formula for power sums ps. The number N >= 1 of indeterminates is suppressed in the notations.

Examples

			The irregular triangle (partition array) T(n, k)  begins:
n\k 1  2  3  4  5   6  7  8   9  10  11  12 13 14 15 ...
-------------------------------------------------------------------------------------------
1:  1
2:  2 -2  1
3:  3 -3 -3  3  3  -3  1
4:  4 -4 -4 -4  6   4  8 -8  -4   4  -4   4  2 -4  1
...
n = 5: [[5], [-5, -5, -5, -5, 10], [5, 10, 10, -15, 5, -15, 5, 5], [-5, -15, 10, 5, 10, -5, -5, -5, 5], [5, 5, -5, 5, 5, -5, 1]];
n = 6: [[6],[-6, -6, -6, -6, -6, 15], [6, 12, 12, 12, -24, 6, 12. -24, 6, -12, 12, 2], [-6, -18, -18, 18, 9, -18, 36, 0, 0, -18, 6, -18, 9, 0, 3], [6, 24, -12, -12, -18, 0, 0, 18, 12, 0, -12, -6, 6], [-6, 6, 6, 3,-6,-12, -2, 6, 9, -6, 1]];
n = 7: [[7], [-7, -7, -7, -7, -7, -7, 21] , [7, 14, 14, 14, 14, -35, 7, 14, 14, -35, 7, 7, -35, 14, 7, 7], [-7, -21, -21, -21, 28, 14, -21,-42, 56, 7, 28, 7, -21, -21, -7, 28, -21, 14, -21, 7, -7, -7, 14],  [7, 28, 28, -21, -21, 42, -63, -14, -7, -7, 35, 14, -21, 35, -14, 35, -14, -21, 7, -21, 14, -7, 7], [-7, -35, 14, 14, 7, 28, 7, 7, -21, -21,-21,-14, -7, 35, 7, 14, 7, -21, -7, 7], [7, -7, -7, -7, 7, 14, 7, 7, -7, -21, -7, 7, 14, -7, 1]]:
Brackets combine terms belonging to the same number of parts.
...
n = 3: psigma(2, 3) := Sum_{1<= i1 < i2 <= N} (x_{i1}*x_{i2})^3 = (1/2)*(-ps(2*3) + (ps(3))^2) = 3*e_6 - 3*e_1*e_5 - 3*e_2*e_4 + 3*(e_3)^2 + 3*(e_1)^2*e_4 - 3*e_1*e_2*e_3 + (e_2)^3. This becomes an identity if the e_j are written in terms of the indeterminates x_1, ..., x_N, for any N >= 1.
		

Crossrefs

Cf. A115121, A324254 (psigma(2, n) in terms of power sums).

Formula

psigma(2, n) = Sum_{k=1.. A209816(n)} T(n, k)*Product_{j=1..2*n} (e_j)^a(2*n,k,j), for n >= 1, if the k-th partition of 2*n (in Abramowitz-Stegun order) is Product_{j=1..2*n} j^a(2*n,k,j). Here the elemntary symmetric functions are e_j = e_j^{(N)} for N indeterminates x_1, ..., x_N, for any N >= 1.
Showing 1-2 of 2 results.