cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066760 a(n) = Sum_{1<=k<=n, k is not a divisor of n and k is not coprime to n} k.

Original entry on oeis.org

0, 0, 0, 0, 0, 4, 0, 6, 6, 18, 0, 27, 0, 40, 37, 42, 0, 79, 0, 89, 74, 108, 0, 145, 45, 154, 96, 183, 0, 274, 0, 210, 184, 270, 163, 360, 0, 340, 257, 411, 0, 556, 0, 467, 418, 504, 0, 669, 140, 683, 439, 657, 0, 880, 369, 805, 548, 810, 0, 1183, 0, 928, 779, 930, 502
Offset: 1

Views

Author

Jon Perry, Jan 17 2002

Keywords

Comments

This function can be used to prove no p^k is perfect or multi-perfect.

Examples

			There are three integers that satisfy this definition for n = 12, namely 8, 9 and 10. These sum to 27, hence a(12) = 27.
		

Crossrefs

Programs

  • Magma
    [0] cat [1 + n*(n+1)/2 - SumOfDivisors(n) - n*EulerPhi(n)/2: n in [2..70]]; // Vincenzo Librandi, Nov 03 2014
  • Maple
    f:= n -> 1 + n*(n+1)/2 - numtheory:-sigma(n) - n*numtheory:-phi(n)/2;
    0, seq(f(n),n=2..100); # Robert Israel, Nov 02 2014
  • Mathematica
    Table[n(n + 1)/2 + 1 - EulerPhi[n] * n/2 - DivisorSigma[1, n], {n, 2, 65}] (* Robert G. Wilson v, Jul 31 2004 *)
    Table[Sum[k * Boole[Not[Divisible[n, k]]] * Boole[GCD[n, k] > 1], {k, n - 1}], {n, 65}] (* Alonso del Arte, Nov 02 2014 *)
  • PARI
    a(n)=n*(n + 1 - eulerphi(n))\2 + 1 - sigma(n) \\ Charles R Greathouse IV, Nov 02 2014
    

Formula

a(n) = 1 + n*(n+1)/2 - sigma(n) - n*phi(n)/2.
a(n) = 0 if and only if n = 1, 4 or a prime. - Robert G. Wilson v, Jul 31 2004
a(n) = 1 + A067392(n) - A000203(n). - Amiram Eldar, Dec 03 2023
a(n) = Sum_{k=1..n} k * (1 - floor(1/gcd(n,k))) * (ceiling(n/k) - floor(n/k)). - Wesley Ivan Hurt, Jan 06 2024

Extensions

Offset corrected to 1 by Michael De Vlieger, Jul 05 2014