A024816
Antisigma(n): Sum of the numbers less than n that do not divide n.
Original entry on oeis.org
0, 0, 2, 3, 9, 9, 20, 21, 32, 37, 54, 50, 77, 81, 96, 105, 135, 132, 170, 168, 199, 217, 252, 240, 294, 309, 338, 350, 405, 393, 464, 465, 513, 541, 582, 575, 665, 681, 724, 730, 819, 807, 902, 906, 957, 1009, 1080, 1052, 1168, 1182, 1254, 1280, 1377, 1365
Offset: 1
Paul Jobling (paul.jobling(AT)whitecross.com)
a(12)=50 as 5+7+8+9+10+11 = 50 (1,2,3,4,6 not included as they divide 12).
Cf.
A000203 (sigma),
A000217,
A004125,
A023896,
A024916,
A066760,
A076617,
A153485,
A173539,
A173540,
A173541,
A244048,
A352810,
A352811.
Cf.
A342344 (for a symmetric representation).
-
a024816 = sum . a173541_row -- Reinhard Zumkeller, Feb 19 2014
-
[n*(n+1) div 2- SumOfDivisors(n): n in [1..60]]; // Vincenzo Librandi, Dec 29 2015
-
A024816 := proc(n)
n*(n+1)/2-numtheory[sigma](n) ;
end proc: # R. J. Mathar, Aug 03 2013
-
Table[n(n + 1)/2 - DivisorSigma[1, n], {n, 55}] (* Robert G. Wilson v *)
Table[Total[Complement[Range[n],Divisors[n]]],{n,60}] (* Harvey P. Dale, Sep 23 2012 *)
With[{nn=60},#[[1]]-#[[2]]&/@Thread[{Accumulate[Range[nn]],DivisorSigma[ 1,Range[nn]]}]] (* Harvey P. Dale, Nov 22 2014 *)
-
a(n)=n*(n+1)/2-sigma(n) \\ Charles R Greathouse IV, Mar 19 2012
-
from sympy import divisor_sigma
def A024816(n): return (n*(n+1)>>1)-divisor_sigma(n) # Chai Wah Wu, Apr 28 2023
-
def A024816(n): return sum(k for k in (0..n-1) if not k.divides(n))
print([A024816(n) for n in srange(1, 55)]) # Peter Luschny, Nov 14 2023
A023896
Sum of positive integers in smallest positive reduced residue system modulo n. a(1) = 1 by convention.
Original entry on oeis.org
1, 1, 3, 4, 10, 6, 21, 16, 27, 20, 55, 24, 78, 42, 60, 64, 136, 54, 171, 80, 126, 110, 253, 96, 250, 156, 243, 168, 406, 120, 465, 256, 330, 272, 420, 216, 666, 342, 468, 320, 820, 252, 903, 440, 540, 506, 1081, 384, 1029, 500, 816, 624, 1378, 486, 1100, 672
Offset: 1
G.f. = x + x^2 + 3*x^3 + 4*x^4 + 10*x^5 + 6*x^6 + 21*x^7 + 16*x^8 + 27*x^9 + ...
a(12) = 1 + 5 + 7 + 11 = 24.
n = 40: The smallest positive reduced residue system modulo 40 is {1, 3, 7, 9, 11, 13, 17, 19, 21, 23, 27, 29, 31, 33, 37, 39}. The sum is a(40) = 320. Average is 20.
- Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 48, problem 16, the function phi_1(n).
- David M. Burton, Elementary Number Theory, p. 171.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 2001, p. 163.
- J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 111.
- Michael De Vlieger, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
- John D. Baum, A Number-Theoretic Sum, Mathematics Magazine 55.2 (1982): 111-113.
- Geoffrey B. Campbell, Dirichlet summations and products over primes, Int. J. Math. Math. Sci. 16 92) (1993) 359. eq. (3.1)
- Muhammed H. Islam and Shahriar Manzoor, φ1 and phitorial are injections, for any positive integer N, where N > 1.
- Constantin M. Petridi, The Sums of the k-powers of the Euler set and their connection with Artin's conjecture for primitive roots, arXiv:1612.07632 [math.NT], 2016.
- David Zmiaikou, Origamis and permutation groups, Thesis, 2011. See p. 65.
-
a023896 = sum . a038566_row -- Reinhard Zumkeller, Mar 04 2012
-
[1] cat [n*EulerPhi(n)/2: n in [2..70]]; // Vincenzo Librandi, May 16 2015
-
A023896 := proc(n)
if n = 1 then
1;
else
n*numtheory[phi](n)/2 ;
end if;
end proc: # R. J. Mathar, Sep 26 2013
-
a[ n_ ] = n/2*EulerPhi[ n ]; a[ 1 ] = 1; Table[a[n], {n, 56}]
a[ n_] := If[ n < 2, Boole[n == 1], Sum[ k Boole[1 == GCD[n, k]], { k, n}]]; (* Michael Somos, Jul 08 2014 *)
-
{a(n) = if(n<2, n>0, n*eulerphi(n)/2)};
-
A023896(n)=n*eulerphi(n)\/2 \\ about 10% faster. - M. F. Hasler, Feb 01 2021
-
from sympy import totient
def A023896(n): return 1 if n == 1 else n*totient(n)//2 # Chai Wah Wu, Apr 08 2022
-
def A023896(n): return 1 if n == 1 else n*euler_phi(n)//2
print([A023896(n) for n in range(1, 57)]) # Peter Luschny, Dec 03 2023
Typos in programs corrected by
Zak Seidov, Aug 03 2010
A070251
Unrelated-factorial numbers: product of numbers unrelated to n (numbers which have a common divisor with n but do not divide n).
Original entry on oeis.org
1, 1, 1, 1, 1, 4, 1, 6, 6, 192, 1, 720, 1, 23040, 6480, 10080, 1, 12902400, 1, 34836480, 2449440, 1857945600, 1, 50295168000, 3000, 980995276800, 9797760, 9564703948800, 1, 1518492398911488000, 1, 41845579776000, 1571364748800
Offset: 1
Table of a(n) for composite n <= 30, showing prime power decomposition by listing exponents of primes shown in the column heads:
n a(n) 2 3 5 7 11 13
---------------------------------------------
6 4 2
8 6 1, 1
9 6 1, 1
10 192 6, 1
12 720 4, 2, 1
14 23040 9, 2, 1
15 6480 4, 4, 1
16 10080 5, 2, 1, 1
18 12902400 13, 2, 2, 1
20 34836480 12, 5, 1, 1
21 2449440 5, 7, 1, 1
22 1857945600 17, 4, 2, 1
24 50295168000 10, 6, 3, 2, 1
25 3000 3, 1, 3
26 980995276800 21, 5, 2, 1, 1
27 9797760 7, 7, 1, 1
28 9564703948800 19, 6, 2, 1, 1, 1
30 1518492398911488000 22,10, 3, 3, 1, 1
- Michael De Vlieger, Table of n, a(n) for n = 1..629
- Michael De Vlieger, Log log scatterplot of log_10(a(n)), n = 1..10000, where gold represents proper prime power n, green represents squarefree composite n, bright green represents n in A002110, blue represents n in A332785, and purple represents powerful n that are not prime powers.
- Michael De Vlieger, Plot p^m | a(n) at (x,y) = (n, pi(p)), n = 1..2048, with a color function showing m = 1 in black, m = 2 in red, ..., maximum m in magenta.
-
A070251 := proc(n) local i;
remove(k->igcd(n,k)=1,{$1..n}); numtheory[divisors](n);
mul(i, i = %% minus % ) end: # Peter Luschny, Oct 11 2011
-
a[n_] := Times @@ Complement[Range[n], Divisors[n]]/Times @@ Select[ Range[n], CoprimeQ[n, #]&];
Array[a, 33] (* Jean-François Alcover, Jun 03 2019 *)
A381497
a(n) = sum of numbers k < n such that 1 < gcd(k,n) and rad(k) != rad(n), where rad = A007947.
Original entry on oeis.org
0, 0, 0, 0, 0, 9, 0, 6, 6, 25, 0, 36, 0, 49, 45, 42, 0, 81, 0, 100, 84, 121, 0, 144, 45, 169, 96, 196, 0, 315, 0, 210, 198, 289, 175, 354, 0, 361, 273, 430, 0, 609, 0, 484, 435, 529, 0, 648, 140, 655, 459, 676, 0, 801, 385, 826, 570, 841, 0, 1260, 0, 961, 798
Offset: 1
Table of n and a(n) for select n, showing prime power decomposition of both and row n of A381094:
n Factor(n) a(n) Factor(a(n)) Row n of A381094
-------------------------------------------------------------------
6 2 * 3 9 3^2 {2,3,4}
8 2^3 6 2 * 3 {6}
9 3^2 6 2 * 3 {6}
10 2 * 5 25 5^2 {2,4,5,6,8}
12 2^2 * 3 36 2^2 * 3^2 {2,3,4,8,9,10}
14 2 * 7 49 7^2 {2,4,6,7,8,10,12}
15 3 * 5 45 3^2 * 5 {3,5,6,9,10,12}
16 2^4 42 2 * 3 * 7 {6,10,12,14}
18 2 * 3^2 81 3^4 {2,3,4,8,9,10,14,15,16}
20 2^2 * 5 100 2^2 * 5^2 {2,4,5,6,8,12,14,15,16,18}
21 3 * 7 84 2^2 * 3 * 7 {3,6,7,9,12,14,15,18}
22 2 * 11 121 11^2 {2,4,6,8,10,11,12,14,16,18,20}
24 2^3 * 3 144 2^4 * 3^2 {2,3,4,8,9,10,14,15,16,20,21,22}
a(6) = (2+4) + (3) = 9,
a(n) = 6 for n in {8, 9} since 6 is the only number less than n that shares a factor with n but does not have the same squarefree kernel as n.
a(10) = (2+4+6+8) + (5) = 25.
a(12) = (2+4+8+10) + (3+9) = 36.
a(14) = (2+4+6+8+10+12) + (7) = 49.
a(15) = (3+6+9+12) + (5+10) = 45.
a(16) = (6+10+12+14) = 42, etc.
-
rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]]; Table[r = rad[n]; Total@ Select[Range[n], Nor[CoprimeQ[#, n], rad[#] == r] &], {n, 120}]
A250398
Composite numbers whose sum of divisors divides the sum of their unrelated numbers.
Original entry on oeis.org
4, 10, 22, 34, 46, 58, 82, 94, 106, 118, 142, 166, 178, 202, 214, 226, 262, 274, 298, 334, 346, 358, 382, 394, 454, 466, 478, 493, 502, 514, 526, 538, 562, 586, 622, 634, 694, 706, 718, 766, 778, 802, 838, 862, 886, 898, 922, 934, 958, 982, 1006, 1018, 1042, 1114
Offset: 1
There is no unrelated number to 4. Therefore 0 / sigma(4) = 0 / 7 = 0 is an integer.
Unrelated numbers to 10 are 4, 6, 8 and their sum is 18. Now, 18 / sigma(10) = 18 / 18 = 1, that is an integer.
A381499
a(n) = sum of numbers k < n such that 1 < gcd(k,n) < k and rad(k) does not divide n, where rad = A007947.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 0, 6, 6, 6, 0, 10, 0, 28, 28, 42, 0, 39, 0, 65, 65, 80, 0, 102, 45, 126, 96, 159, 0, 111, 0, 210, 148, 210, 138, 253, 0, 280, 221, 338, 0, 342, 0, 411, 366, 444, 0, 547, 140, 563, 403, 601, 0, 700, 344, 708, 512, 750, 0, 751, 0, 868, 703, 930
Offset: 1
Table of n and a(n) for select n, showing prime power decomposition of the latter and row n of A272619:
n a(n) Factor(a(n)) Row n of A272619
-----------------------------------------------------
8 6 2 * 3 {6}
9 6 2 * 3 {6}
10 6 2 * 3 {6}
12 10 2 * 5 {10}
14 28 2^2 * 7 {6,10,12}
15 28 2^2 * 7 {6,10,12}
16 42 2 * 3 * 7 {6,10,12,14}
18 39 3 * 13 {10,14,15}
20 65 5 * 13 {6,12,14,15,18}
21 65 5 * 13 {6,12,14,15,18}
22 80 2^4 * 5 {6,10,12,14,18,20}
24 102 2 * 3 * 17 {10,14,15,20,21,22}
25 45 3^2 * 5 {10,15,20}
26 126 2 * 3^2 * 7 {6,10,12,14,18,20,22,24}
27 96 2^5 * 3 {6,12,15,18,21,24}
28 159 3 * 53 {6,10,12,18,20,21,22,24,26}
-
rad[x_] := rad[x] = Times @@ FactorInteger[x][[All, 1]]; Table[r = rad[n]; If[PrimeQ[n], 0, Total@ Select[Range[n], And[1 < GCD[#, n] < #, ! Divisible[n, rad[#]]] &]], {n, 120}]
A250399
Composite numbers whose sum of aliquot parts divides the sum of their unrelated numbers.
Original entry on oeis.org
4, 14, 63, 85, 1649, 3127, 6401, 11521, 14121, 30005, 30629, 33101, 45671, 58829, 78227, 82947, 90581, 110975, 159877, 185399, 227341, 308179, 331918, 336299, 359413, 439619, 466759, 476677, 494321, 618701, 666409, 898967, 1044611, 1113641, 1228417, 1248707
Offset: 1
There is no unrelated number to 4. Therefore 0 / (sigma(4)-4) = 0 / (7-4) = 0 is an integer.
Unrelated numbers to 14 are 4, 6, 8, 10, 12 and their sum is 40. Now, 40 / (sigma(14) - 14) = 40 / (24 - 14) = 40 / 10 = 4, that is an integer.
Showing 1-7 of 7 results.
Comments