cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A172037 Prime partial sums of Sophie Germain primes A005384.

Original entry on oeis.org

2, 5, 73, 167, 2423, 7621, 39233, 50969, 89563, 198139, 207029, 267143, 322963, 335117, 438517, 481207, 541547, 812051, 874697, 917611, 939293, 1077761, 1149593, 1354267, 1464011, 1695559, 1880401, 2510083, 2548703, 3115249, 3157487, 3505849, 4519057
Offset: 1

Views

Author

Jonathan Vos Post, Jan 23 2010

Keywords

Comments

a(1) and a(2) are themselves Sophie Germain primes.

Examples

			a(1) = 2 = first Sophie Germain prime A005384(1). a(2) = 5 = sum of first two Sophie Germain primes = 2+3. a(3) = 73 = sum of first six Sophie Germain primes = 2+3+5+11+23+29.
		

Crossrefs

Programs

  • Mathematica
    Select[Accumulate[Select[Prime[Range[5000]],PrimeQ[2#+1]&]],PrimeQ] (* Harvey P. Dale, Nov 27 2013 *)

Formula

A000040 INTERSECTION A066819 = {p such that p is prime and SUM[i=1..k]A005384(k) is prime} = {p such that p is prime and SUM[i=1..k]{p is prime and 2p+1 is prime}.}.

Extensions

a(7) - a(34) from Nathaniel Johnston, Apr 29 2011

A325957 Sophie Germain primes equal to the sum of the first k Sophie Germain primes for some k.

Original entry on oeis.org

2, 5, 39233, 50969, 5402909, 6899969, 7722119, 10490933, 24296873, 46322183, 95837639, 117933353, 122693729, 132514703, 181862003, 303953873, 762321281, 929234279, 1044329843, 1150361501, 1335588539, 1353590321, 1662019811, 2048876033, 2176318433, 2250982931
Offset: 1

Views

Author

Metin Sariyar, Sep 10 2019

Keywords

Comments

The sum of first 268 terms of this sequence is also a Sophie Germain prime. 2 + 5 + 39233 + ... + 1187321288921 = 91753770231881.

Examples

			39233 is a term because sum of the first 56 Sophie Germain primes 2 + 3 + 5 + ... + 1811 = 39233 is prime and 39233*2+1 = 78467 is prime.
		

Crossrefs

Programs

  • Mathematica
    lst={}; s=0; Do[If[PrimeQ[n]&&PrimeQ[2*n+1], s=s+n; If[PrimeQ[s]&&PrimeQ[s*2+1], AppendTo[lst, s]]], {n, 1, 1000000}]; lst
  • PARI
    issg(p) = isprime(2*p+1);
    lista(nn) = {my(s=0); forprime(p=2, nn, if (issg(p), s + = p; if (isprime(s) && issg(s), print1(s, ", "); ); ); ); } \\ Michel Marcus, Sep 11 2019

Formula

Equals A005384 Intersection A066819.
Showing 1-2 of 2 results.