A066822 The fourth column of A038622, triangular array that counts rooted polyominoes.
1, 5, 20, 71, 238, 770, 2436, 7590, 23397, 71566, 217646, 659022, 1988805, 5986176, 17980968, 53922096, 161492571, 483149385, 1444245936, 4314214443, 12880107548, 38436170366, 114657076900, 341926185770, 1019435748435, 3038815305981, 9056974493700
Offset: 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- D. Gouyou-Beauchamps and G. Viennot, Equivalence of the two-dimensional directed animal problem to a one-dimensional path problem, Adv. in Appl. Math. 9 (1988), no. 3, 334-357.
Programs
-
Haskell
a066822 = flip a038622 3 . (+ 3) -- Reinhard Zumkeller, Feb 26 2013
-
Maple
a := n -> simplify(GegenbauerC(n,-n+1-4,-1/2)+GegenbauerC(n-1,-n-3,-1/2)): seq(a(n), n=0..20); # Peter Luschny, May 12 2016
-
Mathematica
Table[GegenbauerC[n,-n-3,-1/2]+GegenbauerC[n-1,-n-3,-1/2],{n,0,40}] (* Harvey P. Dale, Feb 20 2017 *)
-
PARI
s=[0,1]; {A038622(n,k)=if(n==0,1,t=(2*(n+k)*(n+k-1)*s[2]+3*(n+k-1)*(n+k-2)*s[1])/((n+2*k-1)*n); s[1]=s[2]; s[2]=t; t)}
Formula
a(0)=0; a(1)=1; (n+7)*n*a(n)=2*(n+4)*(n+3)*a(n-1) + 3*(n+3)*(n+2)*a(n-2).
a(n) = ((-3)^(1/2)/9)*(-2*(n+7)^(-1)*(n+4)*(-1)^n*hypergeom([3/2, n+6],[2],4/3)-(n+6)^(-1)*(-1)^n*(5*n+18)*hypergeom([3/2, n+5],[2],4/3)). - Mark van Hoeij, Oct 31 2011
a(n) ~ 3^(n+7/2) / sqrt(Pi*n). - Vaclav Kotesovec, Mar 10 2014
a(n) = GegenbauerC(n,-n+1-4,-1/2)+GegenbauerC(n-1,-n-3,-1/2). - Peter Luschny, May 12 2016
Extensions
More terms from Harvey P. Dale, Feb 20 2017
Comments