cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066822 The fourth column of A038622, triangular array that counts rooted polyominoes.

Original entry on oeis.org

1, 5, 20, 71, 238, 770, 2436, 7590, 23397, 71566, 217646, 659022, 1988805, 5986176, 17980968, 53922096, 161492571, 483149385, 1444245936, 4314214443, 12880107548, 38436170366, 114657076900, 341926185770, 1019435748435, 3038815305981, 9056974493700
Offset: 0

Views

Author

Randall L Rathbun, Jan 19 2002

Keywords

Comments

There is a general solution for all rows of this triangular array: For the k-th row and n-th term on this row: a(0)=0; a(1)=1; a(n) = (2*k-1+n)*n*a(n) = 2*(n+k)*(n+k-1)*a(n-1) + 3*(n+k-1)*(n+k-2)*a(n-2).

Crossrefs

Programs

  • Haskell
    a066822 = flip a038622 3 . (+ 3)  -- Reinhard Zumkeller, Feb 26 2013
  • Maple
    a := n -> simplify(GegenbauerC(n,-n+1-4,-1/2)+GegenbauerC(n-1,-n-3,-1/2)):
    seq(a(n), n=0..20); # Peter Luschny, May 12 2016
  • Mathematica
    Table[GegenbauerC[n,-n-3,-1/2]+GegenbauerC[n-1,-n-3,-1/2],{n,0,40}] (* Harvey P. Dale, Feb 20 2017 *)
  • PARI
    s=[0,1]; {A038622(n,k)=if(n==0,1,t=(2*(n+k)*(n+k-1)*s[2]+3*(n+k-1)*(n+k-2)*s[1])/((n+2*k-1)*n); s[1]=s[2]; s[2]=t; t)}
    

Formula

a(0)=0; a(1)=1; (n+7)*n*a(n)=2*(n+4)*(n+3)*a(n-1) + 3*(n+3)*(n+2)*a(n-2).
a(n) = ((-3)^(1/2)/9)*(-2*(n+7)^(-1)*(n+4)*(-1)^n*hypergeom([3/2, n+6],[2],4/3)-(n+6)^(-1)*(-1)^n*(5*n+18)*hypergeom([3/2, n+5],[2],4/3)). - Mark van Hoeij, Oct 31 2011
a(n) ~ 3^(n+7/2) / sqrt(Pi*n). - Vaclav Kotesovec, Mar 10 2014
a(n) = GegenbauerC(n,-n+1-4,-1/2)+GegenbauerC(n-1,-n-3,-1/2). - Peter Luschny, May 12 2016

Extensions

More terms from Harvey P. Dale, Feb 20 2017