A066829 Parity of Omega(n): a(n) = 1 if n is the product of an odd number of primes; 0 if product of even number of primes.
0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0
Offset: 1
Examples
From _Reinhard Zumkeller_, Jul 01 2009: (Start) Sieve for N = 30, also demonstrating the affinity to the Sieve of Eratosthenes: [initial] a(j):=0, 1<=j<=30: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [i=1] a(1)=0 --> a(j):=1, 2<=j<=30: 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 [i=2] a(2)=1 --> a(2*j):=0, 2<=j<=[30/2]: 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 [i=3] a(3)=1 --> a(3*j):=0, 2<=j<=[30/3]: 0 1 1 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 [i=4] a(4)=0 --> a(4*j):=1, 2<=j<=[30/4]: 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 1 1 0 1 1 0 0 1 1 1 0 0 1 1 0 [i=5] a(5)=1 --> a(5*j):=0, 2<=j<=[30/5]: 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 1 1 0 1 0 0 0 1 1 0 0 0 1 1 0 [i=6] a(6)=0 --> a(6*j):=1, 2<=j<=[30/6]: 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 1 1 1 1 0 0 0 1 1 0 0 0 1 1 1 [i=7] a(7)=1 --> a(7*j):=0, 2<=j<=[30/7]: 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 1 1 1 1 0 0 0 1 1 0 0 0 0 1 1 [i=8] a(8)=1 --> a(8*j):=0, 2<=j<=[30/8]: 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 0 0 0 0 0 1 1 [i=9] a(9)=0 --> a(9*j):=1, 2<=j<=[30/9]: 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 0 0 0 1 0 1 1 [i=10] a(10)=0 --> a(10*j):=1, 2<=j<=[30/10]: 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 1 1 1 1 0 0 1 0 0 0 1 0 1 1 and so on: a(22):=0 in [i=11], a(24):=0 in [i=12], a(26):=0 in [i=13], a(28):=1 in [i=14], and a(30):=1 in [i=15]. (End)
Links
- Antti Karttunen, Table of n, a(n) for n = 1..100000 (first 10000 terms from Reinhard Zumkeller)
- S. Ramanujan, Irregular numbers, J. Indian Math. Soc., 5 (1913), 105-106; Coll. Papers 20-21 (provides Dirichlet g.f.)
- Index entries for characteristic functions
- Index entries for sequences computed from exponents in factorization of n
- Index entries for sequences generated by sieves
Crossrefs
Programs
-
Haskell
a066829 = (`mod` 2) . a001222 -- Reinhard Zumkeller, Nov 19 2011
-
Maple
A066829 := proc(n) modp(numtheory[bigomega](n) ,2) ; end proc: seq(A066829(n),n=1..80) ; # R. J. Mathar, Jul 15 2017
-
Mathematica
Table[(1-LiouvilleLambda[n])/2,{n,1,20}] (* Enrique Pérez Herrero, Jul 07 2012 *) Table[If[OddQ[PrimeOmega[n]],1,0],{n,120}] (* Harvey P. Dale, Mar 12 2016 *)
-
PARI
A066829(n) = (bigomega(n)%2); \\ Simplified by Antti Karttunen, Apr 30 2022
-
Python
from sympy import primeomega as Omega def a(n): return Omega(n)%2 print([a(n) for n in range(1, 105)]) # Michael S. Branicky, Apr 30 2022
-
Python
from operator import ixor from functools import reduce from sympy import factorint def A066829(n): return reduce(ixor, factorint(n).values(),0)&1 # Chai Wah Wu, Jan 01 2023
Formula
Dirichlet g.f.: (zeta(s)^2 - zeta(2*s)) / (2*zeta(s)). [Typo corrected by Vaclav Kotesovec, Jan 30 2024]
a(n) = (1-A008836(n)) / 2. - Corrected by Antti Karttunen, Apr 30 2022
a(m*n) = a(m) XOR a(n). - Reinhard Zumkeller, Aug 28 2008
a(n) = A001222(n) mod 2. - Reinhard Zumkeller, Nov 19 2011
From Antti Karttunen, May 01 & Nov 30 2022: (Start)
Extensions
Corrected and comment added by Reinhard Zumkeller, Jun 26 2009
Comments