A066835 a(n) = omega((prime(n)-1)! + 1), where omega is given by A001221, primes in A000040.
1, 1, 1, 2, 2, 2, 5, 6, 3, 2, 5, 6, 7, 3, 3, 4, 4, 4, 5, 5, 7, 6, 3, 3, 5, 5, 5, 6, 6, 6, 6, 4, 4, 5
Offset: 1
Examples
a(7) = omega((prime(7)-1)! + 1) = omega((17-1)! + 1) = omega(16! + 1) = omega(20922789888000 + 1) = omega(20922789888001) = 5, as 20922789888001 = 17 * 61 * 137 * 139 * 1059511 = prime(7)*prime(18)*prime(33)*prime(34)*prime(82801).
Links
- Hisanori Mishima, Appendix 1. Factorization results for n!+1
- Eric Weisstein's World of Mathematics, Wilson's Theorem
Programs
-
Mathematica
Table[ Length[ FactorInteger[ (Prime[ n ] - 1)! + 1 ] ], {n, 1, 15} ] PrimeNu[(Prime[Range[15]] - 1)! + 1] (* Paolo Xausa, Feb 07 2025 *)
-
PARI
a(n) = omega((prime(n)-1)! + 1); \\ Jinyuan Wang, Apr 01 2020
Formula
Extensions
More terms from Robert G. Wilson v, Jan 21 2002
a(27)-a(34) from Jinyuan Wang, Apr 01 2020