cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066839 a(n) = sum of positive divisors k of n with k <= sqrt(n).

Original entry on oeis.org

1, 1, 1, 3, 1, 3, 1, 3, 4, 3, 1, 6, 1, 3, 4, 7, 1, 6, 1, 7, 4, 3, 1, 10, 6, 3, 4, 7, 1, 11, 1, 7, 4, 3, 6, 16, 1, 3, 4, 12, 1, 12, 1, 7, 9, 3, 1, 16, 8, 8, 4, 7, 1, 12, 6, 14, 4, 3, 1, 21, 1, 3, 11, 15, 6, 12, 1, 7, 4, 15, 1, 24, 1, 3, 9, 7, 8, 12, 1, 20, 13, 3, 1, 23, 6, 3, 4, 15, 1, 26, 8, 7, 4, 3
Offset: 1

Views

Author

Leroy Quet, Jan 20 2002

Keywords

Comments

Row sums of the table in A161906. - Reinhard Zumkeller, Mar 08 2013
Conjecture: a(n) is the total number of parts in all partitions of n into consecutive parts that differ by 2. - Omar E. Pol, May 03 2020. This conjecture is true (the g.f. for these partitions agrees with the g.f. given below by Michael Somos). - N. J. A. Sloane, Dec 02 2020
Column 2 of A334466. - Omar E. Pol, Dec 03 2020

Examples

			a(9) = 4 = 1 + 3 because 1 and 3 are the positive divisors of 9 that are <= sqrt(9).
a(20) = 7: the divisors of 20 are 1, 2, 4, 5, 10 and 20. a(20) = 1 + 2 + 4 = 7.
		

Crossrefs

Programs

  • Haskell
    a066839 = sum . a161906_row  -- Reinhard Zumkeller, Mar 08 2013
    
  • Maple
    with(numtheory):for n from 1 to 200 do c[n] := 0:d := divisors(n):for i from 1 to nops(d) do if d[i]<=n^.5+10^(-10) then c[n] := c[n]+d[i]:fi:od:od:seq(c[i],i=1..200);
    # alternative
    seq(add(d, d in select(x->x^2<=n, numtheory[divisors](n))), n=1..100); # Ridouane Oudra, Jun 24 2025
  • Mathematica
    f[n_] := Plus @@ Select[ Divisors@n, # <= Sqrt@n &]; Array[f, 94] (* Robert G. Wilson v, Mar 04 2010 *)
    Table[Sum[If[n > k*(k-1), k, 0], {k, Divisors[n]}], {n, 1, 100}] (* Vaclav Kotesovec, Oct 22 2024 *)
  • PARI
    a(n)=sumdiv(n,d, (d^2<=n)*d) /* Michael Somos, Nov 19 2005 */
    
  • PARI
    { for (n=1, 1000, d=divisors(n); s=sum(k=1, ceil(length(d)/2), d[k]); write("b066839.txt", n, " ", s) ) } \\ Harry J. Smith, Mar 31 2010
    
  • Python
    from itertools import takewhile
    from sympy import divisors
    def A066839(n): return sum(takewhile(lambda x:x**2<=n,divisors(n))) # Chai Wah Wu, Dec 19 2023
  • Sage
    [sum(k for k in divisors(n) if k^2<=n) for n in (1..94)] # Giuseppe Coppoletta, Jan 21 2015
    

Formula

G.f.: Sum_{k>0} k*x^(k^2)/(1-x^k). - Michael Somos, Nov 19 2005
a(n) = Sum_{i=1..floor(sqrt(n))} (-(n mod i) + (n-1) mod i + 1). - José de Jesús Camacho Medina, Feb 21 2021
a(p^(2k+1)) = a(p^(2k)) = (p^(k+1)-1)/(p-1) = A000203(p^k) for k>=0 and p prime. - Chai Wah Wu, Dec 23 2023
Sum_{k=1..n} a(k) ~ 2 * n^(3/2) / 3 [Iannucci, 2019]. - Vaclav Kotesovec, Oct 23 2024
a(n) = A070039(n) + A037213(n). - Ridouane Oudra, Jun 24 2025

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Apr 12 2002