A066880 Biased numbers: n such that all terms of the sequence f(n), f(f(n)), f(f(f(n))), ..., 1, where f(k) = floor(k/2), are odd.
2, 3, 6, 7, 14, 15, 30, 31, 62, 63, 126, 127, 254, 255, 510, 511, 1022, 1023, 2046, 2047, 4094, 4095, 8190, 8191, 16382, 16383, 32766, 32767, 65534, 65535, 131070, 131071, 262142, 262143, 524286, 524287, 1048574, 1048575, 2097150, 2097151, 4194302, 4194303
Offset: 1
Examples
The sequence corresponding to 14 is 7, 3, 1, all of whose terms are odd. So 14 is a term of the sequence.
Links
- Index entries for linear recurrences with constant coefficients, signature (0,3,0,-2).
Crossrefs
Cf. A075427.
Programs
-
Mathematica
atsoQ[n_]:=AllTrue[Rest[NestWhileList[Floor[#/2]&,n,#>1&]],OddQ]; Select[Range[2,42*10^5],atsoQ] (* Harvey P. Dale, Dec 27 2023 *)
Formula
From Alois P. Heinz, Dec 27 2023: (Start)
G.f.: -x*(2*x^3-3*x-2)/((x-1)*(x+1)*(2*x^2-1)).
a(n) = 2^floor((n+3)/2)-1-(n mod 2). (End)
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), Jun 11 2002
Comments