cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A066919 a(n) = least number of applications of f to n to reach 1, where f is defined by f(n) = phi(n) if n is even; = sigma(n) if n is odd.

Original entry on oeis.org

0, 1, 3, 2, 3, 2, 4, 3, 5, 3, 4, 3, 4, 3, 5, 4, 4, 3, 5, 4, 6, 4, 5, 4, 7, 4, 6, 4, 5, 4, 6, 5, 6, 5, 6, 4, 5, 4, 6, 5, 5, 4, 6, 5, 6, 5, 6, 5, 8, 5, 6, 5, 5, 4, 6, 5, 7, 5, 6, 5, 6, 5, 7, 6, 6, 5, 7, 6, 7, 5, 6, 5, 6, 5, 7, 5, 7, 5, 7, 6, 10, 6, 6, 5, 6, 5, 7, 6, 6, 5, 7, 6, 8, 6, 7, 6, 6, 5, 7, 6, 7, 6, 7, 6
Offset: 1

Views

Author

Joseph L. Pe, Jan 23 2002

Keywords

Comments

a(n) is in [0,19] for n < 10^5. Conjecture: a(n) exists for all n, i.e. repeated application of f to n eventually yields 1, for any n. The only way this could fail is if n, f(n), f(f(n)), ... are all odd squares.
The conjecture is true, since sequence A055021 (smallest x such that n iterations of sigma() are required for the result to be >= 2x) is complete. - Vim Wenders, Apr 07 2008

Examples

			f(f(f(f(7)))) = f(f(f(8))) = f(f(4)) = f(2) = 1 and 4 applications of f are required to achieve this. Therefore a(7) = 4.
		

Programs

  • Mathematica
    f[n_] := If[EvenQ[n], EulerPhi[n], DivisorSigma[1, n]]; a[n_] := Module[{b=n, k=0}, While[b>1, b=f[b]; k++ ]; k]; Table[a[i], {i, 1, 105}]
    Table[Length[NestWhileList[If[EvenQ[#],EulerPhi[#],DivisorSigma[1,#]]&,n,#!=1&]],{n,110}]-1 (* Harvey P. Dale, Jun 16 2018 *)

Extensions

Edited by Dean Hickerson, Oct 26 2002