cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A073858 Numbers k such that sigma(phi(k)) divides phi(sigma(k)).

Original entry on oeis.org

1, 2, 4, 9, 16, 18, 64, 100, 225, 242, 450, 516, 729, 1458, 3872, 4096, 4624, 13932, 14406, 17672, 18225, 20124, 21780, 28900, 29262, 29616, 36450, 45996, 62500, 65025, 65536, 76832, 92778, 95916, 106092, 106308, 114630, 114930
Offset: 1

Views

Author

Benoit Cloitre, Sep 02 2002

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[115000],Divisible[EulerPhi[DivisorSigma[1,#]],DivisorSigma[ 1,EulerPhi[ #]]]&] (* Harvey P. Dale, Jan 31 2021 *)
  • PARI
    isok(k) = eulerphi(sigma(k)) % sigma(eulerphi(k))==0 \\ Donovan Johnson, Jul 05 2012

A370689 Numerator of sigma(phi(n))/phi(sigma(n)), where sigma is the sum of the divisors function and phi is the Euler totient function.

Original entry on oeis.org

1, 1, 3, 1, 7, 3, 3, 7, 1, 7, 9, 7, 14, 3, 15, 1, 31, 1, 39, 5, 7, 3, 9, 15, 7, 7, 39, 7, 7, 5, 9, 31, 21, 31, 15, 7, 91, 39, 5, 31, 15, 7, 24, 7, 5, 3, 9, 31, 8, 7, 21, 10, 49, 39, 15, 15, 91, 7, 45, 31, 28, 9, 91, 1, 31, 7, 9, 7, 21, 5, 6, 5, 65, 91, 3, 91, 21
Offset: 1

Views

Author

Amiram Eldar, Feb 27 2024

Keywords

Examples

			Fractions begin with: 1, 1/2, 3/2, 1/2, 7/2, 3/4, 3, 7/8, 1, 7/6, 9/2, 7/12, ...
		

Crossrefs

Cf. A000010, A000203, A033632, A062401, A062402, A065395, A066930, A289336, A073858 (positions of 1's), A289412, A370690 (denominators).

Programs

  • Mathematica
    Table[DivisorSigma[1, EulerPhi[n]]/EulerPhi[DivisorSigma[1, n]], {n, 1, 100}] // Numerator
  • PARI
    a(n) = {my(f = factor(n)); numerator(sigma(eulerphi(f)) / eulerphi(sigma(f)));}

Formula

Let f(n) = a(n)/A370690(n) = A062402(n)/A062401(n).
Formulas from De Koninck and Luca (2007):
lim sup_{n->oo} f(n)/log_2(n)^2 = exp(2*gamma) (A091724).
lim inf_{n->oo} f(n)/log_2(n)^2 = delta exists, and exp(-gamma)/40 <= delta <= 2*exp(-gamma).
Sum_{k=1..n} f(k) = c * exp(2*gamma) * log_3(n)^2 * n + O(n * log_3(n)^(3/2)), where c = Product_{p prime} (1 - 3/(p*(p + 1)) + 1/(p^2*(p + 1)) + ((p-1)^3/p^2)*Sum_{k>=3} 1/(p^k-1)) = 0.45782563109026414241... .

A370690 Denominator of sigma(phi(n))/phi(sigma(n)), where sigma is the sum of the divisors function and phi is the Euler totient function.

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 1, 8, 1, 6, 2, 12, 3, 2, 8, 2, 6, 2, 8, 4, 4, 2, 2, 16, 5, 3, 16, 6, 1, 8, 2, 36, 8, 18, 4, 18, 18, 16, 2, 24, 2, 8, 5, 4, 2, 2, 2, 60, 3, 10, 8, 7, 9, 32, 4, 8, 32, 3, 8, 48, 5, 4, 48, 2, 6, 8, 2, 4, 8, 4, 1, 8, 12, 36, 2, 48, 4, 4, 4, 20, 11
Offset: 1

Views

Author

Amiram Eldar, Feb 27 2024

Keywords

Comments

See A370689 for details.

Crossrefs

Cf. A000010, A000203, A033632, A062401, A062402, A065395, A066930 (positions of 1's), A073858, A289336, A289412, A370689 (numerators).

Programs

  • Mathematica
    Table[DivisorSigma[1, EulerPhi[n]]/EulerPhi[DivisorSigma[1, n]], {n, 1, 100}] // Denominator
  • PARI
    a(n) = {my(f = factor(n)); denominator(sigma(eulerphi(f)) / eulerphi(sigma(f)));}
Showing 1-3 of 3 results.